| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 3 |  | pntrlog2bnd.t |  |-  T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) | 
						
							| 4 |  | pntrlog2bndlem5.1 |  |-  ( ph -> B e. RR+ ) | 
						
							| 5 |  | pntrlog2bndlem5.2 |  |-  ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) | 
						
							| 6 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 8 |  | 1rp |  |-  1 e. RR+ | 
						
							| 9 | 8 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 10 |  | 1red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 11 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 14 | 10 7 13 | ltled |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 15 | 7 9 14 | rpgecld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 16 | 2 | pntrf |  |-  R : RR+ --> RR | 
						
							| 17 | 16 | ffvelcdmi |  |-  ( x e. RR+ -> ( R ` x ) e. RR ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) | 
						
							| 19 | 18 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) | 
						
							| 20 | 19 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. CC ) | 
						
							| 22 | 15 | relogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 24 | 21 23 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 25 |  | 2cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 26 | 7 13 | rplogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 27 | 26 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 28 | 25 23 27 | divcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) | 
						
							| 29 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 30 | 15 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 31 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 33 | 32 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 34 | 30 33 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 35 | 16 | ffvelcdmi |  |-  ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) | 
						
							| 38 | 37 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) | 
						
							| 39 | 33 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 40 |  | 1red |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 41 | 39 40 | readdcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + 1 ) e. RR ) | 
						
							| 42 | 38 41 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. RR ) | 
						
							| 43 | 42 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. CC ) | 
						
							| 44 | 29 43 | fsumcl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. CC ) | 
						
							| 45 | 28 44 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) e. CC ) | 
						
							| 46 | 24 45 | subcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) e. CC ) | 
						
							| 47 | 38 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. CC ) | 
						
							| 48 | 29 47 | fsumcl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) e. CC ) | 
						
							| 49 | 28 48 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) e. CC ) | 
						
							| 50 | 7 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 51 | 15 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 52 | 46 49 50 51 | divdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) | 
						
							| 53 | 20 22 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) | 
						
							| 54 | 53 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 55 | 54 45 49 | subsubd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) | 
						
							| 56 | 28 44 48 | subdid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) | 
						
							| 57 | 29 43 47 | fsumsub |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) | 
						
							| 58 | 41 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + 1 ) e. CC ) | 
						
							| 59 |  | 1cnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 60 | 47 58 59 | subdid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( log ` n ) + 1 ) - 1 ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) ) ) | 
						
							| 61 | 39 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 62 | 61 59 | pncand |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` n ) + 1 ) - 1 ) = ( log ` n ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( log ` n ) + 1 ) - 1 ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 64 | 47 | mulridd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) = ( abs ` ( R ` ( x / n ) ) ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) ) | 
						
							| 66 | 60 63 65 | 3eqtr3rd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 67 | 66 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 68 | 57 67 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 69 | 68 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 70 | 56 69 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 72 | 55 71 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) | 
						
							| 74 | 52 73 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) | 
						
							| 75 | 74 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) ) | 
						
							| 76 |  | 2re |  |-  2 e. RR | 
						
							| 77 | 76 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) | 
						
							| 78 | 77 26 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) | 
						
							| 79 | 29 42 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. RR ) | 
						
							| 80 | 78 79 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) e. RR ) | 
						
							| 81 | 53 80 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) e. RR ) | 
						
							| 82 | 81 15 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) e. RR ) | 
						
							| 83 | 29 38 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) e. RR ) | 
						
							| 84 | 78 83 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) e. RR ) | 
						
							| 85 | 84 15 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) e. RR ) | 
						
							| 86 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 87 | 1 2 3 | pntrlog2bndlem4 |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) | 
						
							| 88 | 87 | a1i |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 89 | 32 | nnred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) | 
						
							| 90 |  | simpl |  |-  ( ( a e. RR /\ a e. RR+ ) -> a e. RR ) | 
						
							| 91 |  | simpr |  |-  ( ( a e. RR /\ a e. RR+ ) -> a e. RR+ ) | 
						
							| 92 | 91 | relogcld |  |-  ( ( a e. RR /\ a e. RR+ ) -> ( log ` a ) e. RR ) | 
						
							| 93 | 90 92 | remulcld |  |-  ( ( a e. RR /\ a e. RR+ ) -> ( a x. ( log ` a ) ) e. RR ) | 
						
							| 94 |  | 0red |  |-  ( ( a e. RR /\ -. a e. RR+ ) -> 0 e. RR ) | 
						
							| 95 | 93 94 | ifclda |  |-  ( a e. RR -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) e. RR ) | 
						
							| 96 | 3 95 | fmpti |  |-  T : RR --> RR | 
						
							| 97 | 96 | ffvelcdmi |  |-  ( n e. RR -> ( T ` n ) e. RR ) | 
						
							| 98 | 89 97 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. RR ) | 
						
							| 99 | 89 40 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) | 
						
							| 100 | 96 | ffvelcdmi |  |-  ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) e. RR ) | 
						
							| 101 | 99 100 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. RR ) | 
						
							| 102 | 98 101 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. RR ) | 
						
							| 103 | 38 102 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 104 | 29 103 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 105 | 78 104 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. RR ) | 
						
							| 106 | 53 105 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) | 
						
							| 107 | 106 15 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) e. RR ) | 
						
							| 108 |  | 2rp |  |-  2 e. RR+ | 
						
							| 109 | 108 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) | 
						
							| 110 | 109 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) | 
						
							| 111 | 77 26 110 | divge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 / ( log ` x ) ) ) | 
						
							| 112 | 37 | absge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( R ` ( x / n ) ) ) ) | 
						
							| 113 | 33 | adantr |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. RR+ ) | 
						
							| 114 | 113 | rpcnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. CC ) | 
						
							| 115 | 61 | adantr |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` n ) e. CC ) | 
						
							| 116 | 114 115 | mulcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( log ` n ) ) e. CC ) | 
						
							| 117 |  | simpr |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 < n ) | 
						
							| 118 |  | 1re |  |-  1 e. RR | 
						
							| 119 | 113 | rpred |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. RR ) | 
						
							| 120 |  | difrp |  |-  ( ( 1 e. RR /\ n e. RR ) -> ( 1 < n <-> ( n - 1 ) e. RR+ ) ) | 
						
							| 121 | 118 119 120 | sylancr |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 < n <-> ( n - 1 ) e. RR+ ) ) | 
						
							| 122 | 117 121 | mpbid |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n - 1 ) e. RR+ ) | 
						
							| 123 | 122 | relogcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( n - 1 ) ) e. RR ) | 
						
							| 124 | 123 | recnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( n - 1 ) ) e. CC ) | 
						
							| 125 | 114 124 | mulcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( log ` ( n - 1 ) ) ) e. CC ) | 
						
							| 126 | 116 125 124 | subsubd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( log ` n ) ) - ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) | 
						
							| 127 |  | rpre |  |-  ( n e. RR+ -> n e. RR ) | 
						
							| 128 |  | eleq1 |  |-  ( a = n -> ( a e. RR+ <-> n e. RR+ ) ) | 
						
							| 129 |  | id |  |-  ( a = n -> a = n ) | 
						
							| 130 |  | fveq2 |  |-  ( a = n -> ( log ` a ) = ( log ` n ) ) | 
						
							| 131 | 129 130 | oveq12d |  |-  ( a = n -> ( a x. ( log ` a ) ) = ( n x. ( log ` n ) ) ) | 
						
							| 132 | 128 131 | ifbieq1d |  |-  ( a = n -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) | 
						
							| 133 |  | ovex |  |-  ( n x. ( log ` n ) ) e. _V | 
						
							| 134 |  | c0ex |  |-  0 e. _V | 
						
							| 135 | 133 134 | ifex |  |-  if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) e. _V | 
						
							| 136 | 132 3 135 | fvmpt |  |-  ( n e. RR -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) | 
						
							| 137 | 127 136 | syl |  |-  ( n e. RR+ -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) | 
						
							| 138 |  | iftrue |  |-  ( n e. RR+ -> if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) = ( n x. ( log ` n ) ) ) | 
						
							| 139 | 137 138 | eqtrd |  |-  ( n e. RR+ -> ( T ` n ) = ( n x. ( log ` n ) ) ) | 
						
							| 140 | 113 139 | syl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` n ) = ( n x. ( log ` n ) ) ) | 
						
							| 141 |  | rpre |  |-  ( ( n - 1 ) e. RR+ -> ( n - 1 ) e. RR ) | 
						
							| 142 |  | eleq1 |  |-  ( a = ( n - 1 ) -> ( a e. RR+ <-> ( n - 1 ) e. RR+ ) ) | 
						
							| 143 |  | id |  |-  ( a = ( n - 1 ) -> a = ( n - 1 ) ) | 
						
							| 144 |  | fveq2 |  |-  ( a = ( n - 1 ) -> ( log ` a ) = ( log ` ( n - 1 ) ) ) | 
						
							| 145 | 143 144 | oveq12d |  |-  ( a = ( n - 1 ) -> ( a x. ( log ` a ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) | 
						
							| 146 | 142 145 | ifbieq1d |  |-  ( a = ( n - 1 ) -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) | 
						
							| 147 |  | ovex |  |-  ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) e. _V | 
						
							| 148 | 147 134 | ifex |  |-  if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) e. _V | 
						
							| 149 | 146 3 148 | fvmpt |  |-  ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) | 
						
							| 150 | 141 149 | syl |  |-  ( ( n - 1 ) e. RR+ -> ( T ` ( n - 1 ) ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) | 
						
							| 151 |  | iftrue |  |-  ( ( n - 1 ) e. RR+ -> if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) | 
						
							| 152 | 150 151 | eqtrd |  |-  ( ( n - 1 ) e. RR+ -> ( T ` ( n - 1 ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) | 
						
							| 153 | 122 152 | syl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` ( n - 1 ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) | 
						
							| 154 |  | 1cnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 e. CC ) | 
						
							| 155 | 114 154 124 | subdird |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( 1 x. ( log ` ( n - 1 ) ) ) ) ) | 
						
							| 156 | 124 | mullidd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 x. ( log ` ( n - 1 ) ) ) = ( log ` ( n - 1 ) ) ) | 
						
							| 157 | 156 | oveq2d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( log ` ( n - 1 ) ) ) - ( 1 x. ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) | 
						
							| 158 | 153 155 157 | 3eqtrd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` ( n - 1 ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) | 
						
							| 159 | 140 158 | oveq12d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( ( n x. ( log ` n ) ) - ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) ) | 
						
							| 160 | 114 115 124 | subdid |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) ) | 
						
							| 161 | 160 | oveq1d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) = ( ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) | 
						
							| 162 | 126 159 161 | 3eqtr4d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) | 
						
							| 163 | 113 | relogcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` n ) e. RR ) | 
						
							| 164 | 163 123 | resubcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) e. RR ) | 
						
							| 165 | 164 | recnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) e. CC ) | 
						
							| 166 | 114 154 165 | subdird |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) ) | 
						
							| 167 | 165 | mullidd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) | 
						
							| 168 | 167 | oveq2d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) | 
						
							| 169 | 119 164 | remulcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 170 | 169 | recnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) e. CC ) | 
						
							| 171 | 170 115 124 | subsub3d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) ) | 
						
							| 172 | 166 168 171 | 3eqtrd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) ) | 
						
							| 173 | 114 154 | npcand |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 174 | 173 | fveq2d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( ( n - 1 ) + 1 ) ) = ( log ` n ) ) | 
						
							| 175 | 174 | oveq1d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) = ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) | 
						
							| 176 |  | logdifbnd |  |-  ( ( n - 1 ) e. RR+ -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) | 
						
							| 177 | 122 176 | syl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) | 
						
							| 178 | 175 177 | eqbrtrrd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) | 
						
							| 179 |  | 1red |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 e. RR ) | 
						
							| 180 | 164 179 122 | lemuldiv2d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) <_ 1 <-> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) ) | 
						
							| 181 | 178 180 | mpbird |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) <_ 1 ) | 
						
							| 182 | 172 181 | eqbrtrrd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) <_ 1 ) | 
						
							| 183 | 169 123 | readdcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) e. RR ) | 
						
							| 184 | 183 163 179 | lesubadd2d |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) <_ 1 <-> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) ) | 
						
							| 185 | 182 184 | mpbid |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) | 
						
							| 186 | 162 185 | eqbrtrd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) | 
						
							| 187 |  | fveq2 |  |-  ( n = 1 -> ( T ` n ) = ( T ` 1 ) ) | 
						
							| 188 |  | id |  |-  ( a = 1 -> a = 1 ) | 
						
							| 189 | 188 8 | eqeltrdi |  |-  ( a = 1 -> a e. RR+ ) | 
						
							| 190 | 189 | iftrued |  |-  ( a = 1 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = ( a x. ( log ` a ) ) ) | 
						
							| 191 |  | fveq2 |  |-  ( a = 1 -> ( log ` a ) = ( log ` 1 ) ) | 
						
							| 192 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 193 | 191 192 | eqtrdi |  |-  ( a = 1 -> ( log ` a ) = 0 ) | 
						
							| 194 | 188 193 | oveq12d |  |-  ( a = 1 -> ( a x. ( log ` a ) ) = ( 1 x. 0 ) ) | 
						
							| 195 |  | ax-1cn |  |-  1 e. CC | 
						
							| 196 | 195 | mul01i |  |-  ( 1 x. 0 ) = 0 | 
						
							| 197 | 194 196 | eqtrdi |  |-  ( a = 1 -> ( a x. ( log ` a ) ) = 0 ) | 
						
							| 198 | 190 197 | eqtrd |  |-  ( a = 1 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) | 
						
							| 199 | 198 3 134 | fvmpt |  |-  ( 1 e. RR -> ( T ` 1 ) = 0 ) | 
						
							| 200 | 118 199 | ax-mp |  |-  ( T ` 1 ) = 0 | 
						
							| 201 | 187 200 | eqtrdi |  |-  ( n = 1 -> ( T ` n ) = 0 ) | 
						
							| 202 |  | oveq1 |  |-  ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) | 
						
							| 203 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 204 | 202 203 | eqtrdi |  |-  ( n = 1 -> ( n - 1 ) = 0 ) | 
						
							| 205 | 204 | fveq2d |  |-  ( n = 1 -> ( T ` ( n - 1 ) ) = ( T ` 0 ) ) | 
						
							| 206 |  | 0re |  |-  0 e. RR | 
						
							| 207 |  | rpne0 |  |-  ( a e. RR+ -> a =/= 0 ) | 
						
							| 208 | 207 | necon2bi |  |-  ( a = 0 -> -. a e. RR+ ) | 
						
							| 209 | 208 | iffalsed |  |-  ( a = 0 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) | 
						
							| 210 | 209 3 134 | fvmpt |  |-  ( 0 e. RR -> ( T ` 0 ) = 0 ) | 
						
							| 211 | 206 210 | ax-mp |  |-  ( T ` 0 ) = 0 | 
						
							| 212 | 205 211 | eqtrdi |  |-  ( n = 1 -> ( T ` ( n - 1 ) ) = 0 ) | 
						
							| 213 | 201 212 | oveq12d |  |-  ( n = 1 -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( 0 - 0 ) ) | 
						
							| 214 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 215 | 213 214 | eqtrdi |  |-  ( n = 1 -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) | 
						
							| 216 | 215 | eqcoms |  |-  ( 1 = n -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) | 
						
							| 217 | 216 | adantl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) | 
						
							| 218 |  | 0red |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 e. RR ) | 
						
							| 219 | 32 | nnge1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) | 
						
							| 220 | 89 219 | logge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( log ` n ) ) | 
						
							| 221 | 39 | lep1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) <_ ( ( log ` n ) + 1 ) ) | 
						
							| 222 | 218 39 41 220 221 | letrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( log ` n ) + 1 ) ) | 
						
							| 223 | 222 | adantr |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> 0 <_ ( ( log ` n ) + 1 ) ) | 
						
							| 224 | 217 223 | eqbrtrd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) | 
						
							| 225 |  | elfzle1 |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> 1 <_ n ) | 
						
							| 226 | 225 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) | 
						
							| 227 | 40 89 | leloed |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 <_ n <-> ( 1 < n \/ 1 = n ) ) ) | 
						
							| 228 | 226 227 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 < n \/ 1 = n ) ) | 
						
							| 229 | 186 224 228 | mpjaodan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) | 
						
							| 230 | 102 41 38 112 229 | lemul2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) | 
						
							| 231 | 29 103 42 230 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) | 
						
							| 232 | 104 79 78 111 231 | lemul2ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) <_ ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) | 
						
							| 233 | 105 80 53 232 | lesub2dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) <_ ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 234 | 81 106 15 233 | lediv1dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) <_ ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) | 
						
							| 235 | 234 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) <_ ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) | 
						
							| 236 | 86 88 107 82 235 | lo1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 237 | 108 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 238 | 237 4 | rpmulcld |  |-  ( ph -> ( 2 x. B ) e. RR+ ) | 
						
							| 239 | 238 | rpred |  |-  ( ph -> ( 2 x. B ) e. RR ) | 
						
							| 240 | 239 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. B ) e. RR ) | 
						
							| 241 | 10 26 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 242 | 10 241 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. RR ) | 
						
							| 243 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 244 |  | lo1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ ( 2 x. B ) e. RR ) -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. B ) ) e. <_O(1) ) | 
						
							| 245 | 243 239 244 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. B ) ) e. <_O(1) ) | 
						
							| 246 |  | lo1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. RR ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. <_O(1) ) | 
						
							| 247 | 243 86 246 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. <_O(1) ) | 
						
							| 248 |  | divlogrlim |  |-  ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 | 
						
							| 249 |  | rlimo1 |  |-  ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 250 | 248 249 | mp1i |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 251 | 241 250 | o1lo1d |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. <_O(1) ) | 
						
							| 252 | 10 241 247 251 | lo1add |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 + ( 1 / ( log ` x ) ) ) ) e. <_O(1) ) | 
						
							| 253 | 238 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. B ) e. RR+ ) | 
						
							| 254 | 253 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 x. B ) ) | 
						
							| 255 | 240 242 245 252 254 | lo1mul |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) e. <_O(1) ) | 
						
							| 256 | 240 242 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) e. RR ) | 
						
							| 257 | 83 15 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) e. RR ) | 
						
							| 258 | 22 10 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. RR ) | 
						
							| 259 | 4 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR+ ) | 
						
							| 260 | 259 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR ) | 
						
							| 261 | 258 260 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) x. B ) e. RR ) | 
						
							| 262 | 32 | nnrecred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 263 | 29 262 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) | 
						
							| 264 | 263 260 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) e. RR ) | 
						
							| 265 | 38 30 | rerpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) e. RR ) | 
						
							| 266 | 260 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> B e. RR ) | 
						
							| 267 | 262 266 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. B ) e. RR ) | 
						
							| 268 | 34 | rpcnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 269 | 34 | rpne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) | 
						
							| 270 | 37 268 269 | absdivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) ) | 
						
							| 271 | 7 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 272 | 271 32 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 273 | 34 | rpge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) | 
						
							| 274 | 272 273 | absidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) | 
						
							| 275 | 274 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) | 
						
							| 276 | 270 275 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) | 
						
							| 277 | 50 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 278 | 89 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 279 | 51 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) | 
						
							| 280 | 32 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 281 | 47 277 278 279 280 | divdiv2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. n ) / x ) ) | 
						
							| 282 | 47 278 277 279 | div23d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. n ) / x ) = ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) ) | 
						
							| 283 | 276 281 282 | 3eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) ) | 
						
							| 284 |  | fveq2 |  |-  ( y = ( x / n ) -> ( R ` y ) = ( R ` ( x / n ) ) ) | 
						
							| 285 |  | id |  |-  ( y = ( x / n ) -> y = ( x / n ) ) | 
						
							| 286 | 284 285 | oveq12d |  |-  ( y = ( x / n ) -> ( ( R ` y ) / y ) = ( ( R ` ( x / n ) ) / ( x / n ) ) ) | 
						
							| 287 | 286 | fveq2d |  |-  ( y = ( x / n ) -> ( abs ` ( ( R ` y ) / y ) ) = ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) ) | 
						
							| 288 | 287 | breq1d |  |-  ( y = ( x / n ) -> ( ( abs ` ( ( R ` y ) / y ) ) <_ B <-> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) ) | 
						
							| 289 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) | 
						
							| 290 | 288 289 34 | rspcdva |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) | 
						
							| 291 | 283 290 | eqbrtrrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) <_ B ) | 
						
							| 292 | 265 266 33 | lemuldivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) <_ B <-> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( B / n ) ) ) | 
						
							| 293 | 291 292 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( B / n ) ) | 
						
							| 294 | 266 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> B e. CC ) | 
						
							| 295 | 294 278 280 | divrec2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( B / n ) = ( ( 1 / n ) x. B ) ) | 
						
							| 296 | 293 295 | breqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( ( 1 / n ) x. B ) ) | 
						
							| 297 | 29 265 267 296 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 / n ) x. B ) ) | 
						
							| 298 | 29 50 47 51 | fsumdivc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) / x ) ) | 
						
							| 299 | 259 | rpcnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. CC ) | 
						
							| 300 | 262 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 301 | 29 299 300 | fsummulc1 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 / n ) x. B ) ) | 
						
							| 302 | 297 298 301 | 3brtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) ) | 
						
							| 303 | 259 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ B ) | 
						
							| 304 |  | harmonicubnd |  |-  ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 305 | 7 14 304 | syl2anc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 306 | 263 258 260 303 305 | lemul1ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) <_ ( ( ( log ` x ) + 1 ) x. B ) ) | 
						
							| 307 | 257 264 261 302 306 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) x. B ) ) | 
						
							| 308 | 257 261 78 111 307 | lemul2ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) ) <_ ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) | 
						
							| 309 | 28 48 50 51 | divassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) ) ) | 
						
							| 310 | 242 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. CC ) | 
						
							| 311 | 25 299 310 | mul32d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) x. B ) ) | 
						
							| 312 |  | 1cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) | 
						
							| 313 | 23 312 23 27 | divdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) / ( log ` x ) ) = ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) ) | 
						
							| 314 | 23 27 | dividd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) | 
						
							| 315 | 314 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) = ( 1 + ( 1 / ( log ` x ) ) ) ) | 
						
							| 316 | 313 315 | eqtr2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) = ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) | 
						
							| 317 | 316 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( 2 x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) | 
						
							| 318 | 23 312 | addcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. CC ) | 
						
							| 319 | 25 23 318 27 | div32d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) = ( 2 x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) | 
						
							| 320 | 317 319 | eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) ) | 
						
							| 321 | 320 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) x. B ) = ( ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) x. B ) ) | 
						
							| 322 | 28 318 299 | mulassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) x. B ) = ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) | 
						
							| 323 | 311 321 322 | 3eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) | 
						
							| 324 | 308 309 323 | 3brtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) <_ ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 325 | 324 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) <_ ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 326 | 86 255 256 85 325 | lo1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 327 | 82 85 236 326 | lo1add |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) e. <_O(1) ) | 
						
							| 328 | 75 327 | eqeltrrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) |