| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 3 |  | pntrlog2bnd.t |  |-  T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) | 
						
							| 4 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 5 | 4 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 6 |  | 1rp |  |-  1 e. RR+ | 
						
							| 7 | 6 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 8 |  | 1red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 9 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 11 | 10 | simpld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 12 | 8 5 11 | ltled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 13 | 5 7 12 | rpgecld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 14 | 13 | rprege0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 15 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 17 |  | nn0p1nn |  |-  ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 19 | 18 | nnrpd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. RR+ ) | 
						
							| 20 | 13 19 | rpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. RR+ ) | 
						
							| 21 | 2 | pntrval |  |-  ( ( x / ( ( |_ ` x ) + 1 ) ) e. RR+ -> ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) = ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) - ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) = ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) - ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 23 | 5 18 | nndivred |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. RR ) | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 | 24 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) | 
						
							| 26 |  | flltp1 |  |-  ( x e. RR -> x < ( ( |_ ` x ) + 1 ) ) | 
						
							| 27 | 5 26 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x < ( ( |_ ` x ) + 1 ) ) | 
						
							| 28 | 18 | nncnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. CC ) | 
						
							| 29 | 28 | mulridd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) x. 1 ) = ( ( |_ ` x ) + 1 ) ) | 
						
							| 30 | 27 29 | breqtrrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x < ( ( ( |_ ` x ) + 1 ) x. 1 ) ) | 
						
							| 31 | 5 8 19 | ltdivmuld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) < 1 <-> x < ( ( ( |_ ` x ) + 1 ) x. 1 ) ) ) | 
						
							| 32 | 30 31 | mpbird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) < 1 ) | 
						
							| 33 |  | 1lt2 |  |-  1 < 2 | 
						
							| 34 | 33 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < 2 ) | 
						
							| 35 | 23 8 25 32 34 | lttrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) | 
						
							| 36 |  | chpeq0 |  |-  ( ( x / ( ( |_ ` x ) + 1 ) ) e. RR -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 <-> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) ) | 
						
							| 37 | 23 36 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 <-> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) ) | 
						
							| 38 | 35 37 | mpbird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) - ( x / ( ( |_ ` x ) + 1 ) ) ) = ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 40 | 22 39 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) = ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( abs ` ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) ) | 
						
							| 42 |  | 0red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 e. RR ) | 
						
							| 43 | 20 | rpge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 44 | 42 23 43 | abssuble0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) - 0 ) ) | 
						
							| 45 | 23 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. CC ) | 
						
							| 46 | 45 | subid1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) - 0 ) = ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 47 | 41 44 46 | 3eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 48 | 16 | nn0red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. RR ) | 
						
							| 49 | 1 | pntsval2 |  |-  ( ( |_ ` x ) e. RR -> ( S ` ( |_ ` x ) ) = sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` ( |_ ` x ) ) = sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 51 | 16 | nn0cnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. CC ) | 
						
							| 52 |  | 1cnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) | 
						
							| 53 | 51 52 | pncand |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( S ` ( |_ ` x ) ) ) | 
						
							| 55 | 1 | pntsval2 |  |-  ( x e. RR -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 56 | 5 55 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 57 |  | flidm |  |-  ( x e. RR -> ( |_ ` ( |_ ` x ) ) = ( |_ ` x ) ) | 
						
							| 58 | 5 57 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` ( |_ ` x ) ) = ( |_ ` x ) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` ( |_ ` x ) ) ) = ( 1 ... ( |_ ` x ) ) ) | 
						
							| 60 | 59 | sumeq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 61 | 56 60 | eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 62 | 50 54 61 | 3eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( S ` x ) ) | 
						
							| 63 | 53 | fveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( T ` ( |_ ` x ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( 2 x. ( T ` ( |_ ` x ) ) ) ) | 
						
							| 65 | 62 64 | oveq12d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) = ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) | 
						
							| 66 | 47 65 | oveq12d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) ) | 
						
							| 67 | 5 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 68 | 67 | div1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / 1 ) = x ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / 1 ) ) = ( R ` x ) ) | 
						
							| 70 | 2 | pntrf |  |-  R : RR+ --> RR | 
						
							| 71 | 70 | ffvelcdmi |  |-  ( x e. RR+ -> ( R ` x ) e. RR ) | 
						
							| 72 | 13 71 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) | 
						
							| 73 | 69 72 | eqeltrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / 1 ) ) e. RR ) | 
						
							| 74 | 73 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / 1 ) ) e. CC ) | 
						
							| 75 | 74 | abscld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / 1 ) ) ) e. RR ) | 
						
							| 76 | 75 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / 1 ) ) ) e. CC ) | 
						
							| 77 | 76 | mul01d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) = 0 ) | 
						
							| 78 | 66 77 | oveq12d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - 0 ) ) | 
						
							| 79 | 1 | pntsf |  |-  S : RR --> RR | 
						
							| 80 | 79 | ffvelcdmi |  |-  ( x e. RR -> ( S ` x ) e. RR ) | 
						
							| 81 | 5 80 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) e. RR ) | 
						
							| 82 |  | relogcl |  |-  ( a e. RR+ -> ( log ` a ) e. RR ) | 
						
							| 83 |  | remulcl |  |-  ( ( a e. RR /\ ( log ` a ) e. RR ) -> ( a x. ( log ` a ) ) e. RR ) | 
						
							| 84 | 82 83 | sylan2 |  |-  ( ( a e. RR /\ a e. RR+ ) -> ( a x. ( log ` a ) ) e. RR ) | 
						
							| 85 |  | 0red |  |-  ( ( a e. RR /\ -. a e. RR+ ) -> 0 e. RR ) | 
						
							| 86 | 84 85 | ifclda |  |-  ( a e. RR -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) e. RR ) | 
						
							| 87 | 3 86 | fmpti |  |-  T : RR --> RR | 
						
							| 88 | 87 | ffvelcdmi |  |-  ( ( |_ ` x ) e. RR -> ( T ` ( |_ ` x ) ) e. RR ) | 
						
							| 89 | 48 88 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( |_ ` x ) ) e. RR ) | 
						
							| 90 | 25 89 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( |_ ` x ) ) ) e. RR ) | 
						
							| 91 | 81 90 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) e. RR ) | 
						
							| 92 | 23 91 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) e. RR ) | 
						
							| 93 | 92 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) e. CC ) | 
						
							| 94 | 93 | subid1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - 0 ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) ) | 
						
							| 95 | 78 94 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) ) | 
						
							| 96 | 5 | flcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. ZZ ) | 
						
							| 97 |  | fzval3 |  |-  ( ( |_ ` x ) e. ZZ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 99 | 98 | eqcomd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ..^ ( ( |_ ` x ) + 1 ) ) = ( 1 ... ( |_ ` x ) ) ) | 
						
							| 100 | 13 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 101 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 103 | 102 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 104 | 100 103 | rpdivcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 105 | 70 | ffvelcdmi |  |-  ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 106 | 104 105 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 107 | 106 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) | 
						
							| 108 | 107 | abscld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) | 
						
							| 109 | 108 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. CC ) | 
						
							| 110 | 6 | a1i |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR+ ) | 
						
							| 111 | 103 110 | rpaddcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. RR+ ) | 
						
							| 112 | 100 111 | rpdivcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. RR+ ) | 
						
							| 113 | 70 | ffvelcdmi |  |-  ( ( x / ( n + 1 ) ) e. RR+ -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 114 | 112 113 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 115 | 114 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 116 | 115 | abscld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) e. RR ) | 
						
							| 117 | 116 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) e. CC ) | 
						
							| 118 | 109 117 | negsubdi2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) = ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) ) | 
						
							| 119 | 118 | eqcomd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 120 | 102 | nncnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 121 |  | 1cnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 122 | 120 121 | pncand |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 123 | 122 | fveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` ( ( n + 1 ) - 1 ) ) = ( S ` n ) ) | 
						
							| 124 | 122 | fveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( ( n + 1 ) - 1 ) ) = ( T ` n ) ) | 
						
							| 125 |  | rpre |  |-  ( n e. RR+ -> n e. RR ) | 
						
							| 126 |  | eleq1 |  |-  ( a = n -> ( a e. RR+ <-> n e. RR+ ) ) | 
						
							| 127 |  | id |  |-  ( a = n -> a = n ) | 
						
							| 128 |  | fveq2 |  |-  ( a = n -> ( log ` a ) = ( log ` n ) ) | 
						
							| 129 | 127 128 | oveq12d |  |-  ( a = n -> ( a x. ( log ` a ) ) = ( n x. ( log ` n ) ) ) | 
						
							| 130 | 126 129 | ifbieq1d |  |-  ( a = n -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) | 
						
							| 131 |  | ovex |  |-  ( n x. ( log ` n ) ) e. _V | 
						
							| 132 |  | c0ex |  |-  0 e. _V | 
						
							| 133 | 131 132 | ifex |  |-  if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) e. _V | 
						
							| 134 | 130 3 133 | fvmpt |  |-  ( n e. RR -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) | 
						
							| 135 | 125 134 | syl |  |-  ( n e. RR+ -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) | 
						
							| 136 |  | iftrue |  |-  ( n e. RR+ -> if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) = ( n x. ( log ` n ) ) ) | 
						
							| 137 | 135 136 | eqtrd |  |-  ( n e. RR+ -> ( T ` n ) = ( n x. ( log ` n ) ) ) | 
						
							| 138 | 103 137 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) = ( n x. ( log ` n ) ) ) | 
						
							| 139 | 124 138 | eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( ( n + 1 ) - 1 ) ) = ( n x. ( log ` n ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) = ( 2 x. ( n x. ( log ` n ) ) ) ) | 
						
							| 141 | 123 140 | oveq12d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) = ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) | 
						
							| 142 | 119 141 | oveq12d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = ( -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 143 | 108 116 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. RR ) | 
						
							| 144 | 143 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. CC ) | 
						
							| 145 | 102 | nnred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) | 
						
							| 146 | 79 | ffvelcdmi |  |-  ( n e. RR -> ( S ` n ) e. RR ) | 
						
							| 147 | 145 146 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. RR ) | 
						
							| 148 | 24 | a1i |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. RR ) | 
						
							| 149 | 103 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 150 | 145 149 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( log ` n ) ) e. RR ) | 
						
							| 151 | 148 150 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( n x. ( log ` n ) ) ) e. RR ) | 
						
							| 152 | 147 151 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. RR ) | 
						
							| 153 | 152 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. CC ) | 
						
							| 154 | 144 153 | mulneg1d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) = -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 155 | 142 154 | eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 156 | 99 155 | sumeq12rdv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 157 |  | fzfid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 158 | 143 152 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) | 
						
							| 159 | 158 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) | 
						
							| 160 | 157 159 | fsumneg |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 161 | 156 160 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 162 | 95 161 | oveq12d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) | 
						
							| 163 |  | oveq2 |  |-  ( m = n -> ( x / m ) = ( x / n ) ) | 
						
							| 164 | 163 | fveq2d |  |-  ( m = n -> ( R ` ( x / m ) ) = ( R ` ( x / n ) ) ) | 
						
							| 165 | 164 | fveq2d |  |-  ( m = n -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / n ) ) ) ) | 
						
							| 166 |  | fvoveq1 |  |-  ( m = n -> ( S ` ( m - 1 ) ) = ( S ` ( n - 1 ) ) ) | 
						
							| 167 |  | fvoveq1 |  |-  ( m = n -> ( T ` ( m - 1 ) ) = ( T ` ( n - 1 ) ) ) | 
						
							| 168 | 167 | oveq2d |  |-  ( m = n -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. ( T ` ( n - 1 ) ) ) ) | 
						
							| 169 | 166 168 | oveq12d |  |-  ( m = n -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) | 
						
							| 170 | 165 169 | jca |  |-  ( m = n -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / n ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 171 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( x / m ) = ( x / ( n + 1 ) ) ) | 
						
							| 172 | 171 | fveq2d |  |-  ( m = ( n + 1 ) -> ( R ` ( x / m ) ) = ( R ` ( x / ( n + 1 ) ) ) ) | 
						
							| 173 | 172 | fveq2d |  |-  ( m = ( n + 1 ) -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) | 
						
							| 174 |  | fvoveq1 |  |-  ( m = ( n + 1 ) -> ( S ` ( m - 1 ) ) = ( S ` ( ( n + 1 ) - 1 ) ) ) | 
						
							| 175 |  | fvoveq1 |  |-  ( m = ( n + 1 ) -> ( T ` ( m - 1 ) ) = ( T ` ( ( n + 1 ) - 1 ) ) ) | 
						
							| 176 | 175 | oveq2d |  |-  ( m = ( n + 1 ) -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) | 
						
							| 177 | 174 176 | oveq12d |  |-  ( m = ( n + 1 ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) | 
						
							| 178 | 173 177 | jca |  |-  ( m = ( n + 1 ) -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) | 
						
							| 179 |  | oveq2 |  |-  ( m = 1 -> ( x / m ) = ( x / 1 ) ) | 
						
							| 180 | 179 | fveq2d |  |-  ( m = 1 -> ( R ` ( x / m ) ) = ( R ` ( x / 1 ) ) ) | 
						
							| 181 | 180 | fveq2d |  |-  ( m = 1 -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / 1 ) ) ) ) | 
						
							| 182 |  | oveq1 |  |-  ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) | 
						
							| 183 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 184 | 182 183 | eqtrdi |  |-  ( m = 1 -> ( m - 1 ) = 0 ) | 
						
							| 185 | 184 | fveq2d |  |-  ( m = 1 -> ( S ` ( m - 1 ) ) = ( S ` 0 ) ) | 
						
							| 186 |  | 0re |  |-  0 e. RR | 
						
							| 187 |  | fveq2 |  |-  ( a = 0 -> ( |_ ` a ) = ( |_ ` 0 ) ) | 
						
							| 188 |  | 0z |  |-  0 e. ZZ | 
						
							| 189 |  | flid |  |-  ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) | 
						
							| 190 | 188 189 | ax-mp |  |-  ( |_ ` 0 ) = 0 | 
						
							| 191 | 187 190 | eqtrdi |  |-  ( a = 0 -> ( |_ ` a ) = 0 ) | 
						
							| 192 | 191 | oveq2d |  |-  ( a = 0 -> ( 1 ... ( |_ ` a ) ) = ( 1 ... 0 ) ) | 
						
							| 193 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 194 | 192 193 | eqtrdi |  |-  ( a = 0 -> ( 1 ... ( |_ ` a ) ) = (/) ) | 
						
							| 195 | 194 | sumeq1d |  |-  ( a = 0 -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = sum_ i e. (/) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 196 |  | sum0 |  |-  sum_ i e. (/) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = 0 | 
						
							| 197 | 195 196 | eqtrdi |  |-  ( a = 0 -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = 0 ) | 
						
							| 198 | 197 1 132 | fvmpt |  |-  ( 0 e. RR -> ( S ` 0 ) = 0 ) | 
						
							| 199 | 186 198 | ax-mp |  |-  ( S ` 0 ) = 0 | 
						
							| 200 | 185 199 | eqtrdi |  |-  ( m = 1 -> ( S ` ( m - 1 ) ) = 0 ) | 
						
							| 201 | 184 | fveq2d |  |-  ( m = 1 -> ( T ` ( m - 1 ) ) = ( T ` 0 ) ) | 
						
							| 202 |  | rpne0 |  |-  ( a e. RR+ -> a =/= 0 ) | 
						
							| 203 | 202 | necon2bi |  |-  ( a = 0 -> -. a e. RR+ ) | 
						
							| 204 | 203 | iffalsed |  |-  ( a = 0 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) | 
						
							| 205 | 204 3 132 | fvmpt |  |-  ( 0 e. RR -> ( T ` 0 ) = 0 ) | 
						
							| 206 | 186 205 | ax-mp |  |-  ( T ` 0 ) = 0 | 
						
							| 207 | 201 206 | eqtrdi |  |-  ( m = 1 -> ( T ` ( m - 1 ) ) = 0 ) | 
						
							| 208 | 207 | oveq2d |  |-  ( m = 1 -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. 0 ) ) | 
						
							| 209 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 210 | 208 209 | eqtrdi |  |-  ( m = 1 -> ( 2 x. ( T ` ( m - 1 ) ) ) = 0 ) | 
						
							| 211 | 200 210 | oveq12d |  |-  ( m = 1 -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( 0 - 0 ) ) | 
						
							| 212 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 213 | 211 212 | eqtrdi |  |-  ( m = 1 -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = 0 ) | 
						
							| 214 | 181 213 | jca |  |-  ( m = 1 -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / 1 ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = 0 ) ) | 
						
							| 215 |  | oveq2 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( x / m ) = ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 216 | 215 | fveq2d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( R ` ( x / m ) ) = ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 217 | 216 | fveq2d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) ) | 
						
							| 218 |  | fvoveq1 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( S ` ( m - 1 ) ) = ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) | 
						
							| 219 |  | fvoveq1 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( T ` ( m - 1 ) ) = ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) | 
						
							| 220 | 219 | oveq2d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) | 
						
							| 221 | 218 220 | oveq12d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) | 
						
							| 222 | 217 221 | jca |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) ) | 
						
							| 223 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 224 | 18 223 | eleqtrdi |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 225 | 13 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> x e. RR+ ) | 
						
							| 226 |  | elfznn |  |-  ( m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) -> m e. NN ) | 
						
							| 227 | 226 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) | 
						
							| 228 | 227 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR+ ) | 
						
							| 229 | 225 228 | rpdivcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( x / m ) e. RR+ ) | 
						
							| 230 | 70 | ffvelcdmi |  |-  ( ( x / m ) e. RR+ -> ( R ` ( x / m ) ) e. RR ) | 
						
							| 231 | 229 230 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( R ` ( x / m ) ) e. RR ) | 
						
							| 232 | 231 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( R ` ( x / m ) ) e. CC ) | 
						
							| 233 | 232 | abscld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( abs ` ( R ` ( x / m ) ) ) e. RR ) | 
						
							| 234 | 233 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( abs ` ( R ` ( x / m ) ) ) e. CC ) | 
						
							| 235 | 227 | nnred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR ) | 
						
							| 236 |  | 1red |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> 1 e. RR ) | 
						
							| 237 | 235 236 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( m - 1 ) e. RR ) | 
						
							| 238 | 79 | ffvelcdmi |  |-  ( ( m - 1 ) e. RR -> ( S ` ( m - 1 ) ) e. RR ) | 
						
							| 239 | 237 238 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( S ` ( m - 1 ) ) e. RR ) | 
						
							| 240 | 24 | a1i |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> 2 e. RR ) | 
						
							| 241 | 87 | ffvelcdmi |  |-  ( ( m - 1 ) e. RR -> ( T ` ( m - 1 ) ) e. RR ) | 
						
							| 242 | 237 241 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( T ` ( m - 1 ) ) e. RR ) | 
						
							| 243 | 240 242 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( 2 x. ( T ` ( m - 1 ) ) ) e. RR ) | 
						
							| 244 | 239 243 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) e. RR ) | 
						
							| 245 | 244 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) e. CC ) | 
						
							| 246 | 170 178 214 222 224 234 245 | fsumparts |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) = ( ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) ) | 
						
							| 247 | 147 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. CC ) | 
						
							| 248 | 87 | ffvelcdmi |  |-  ( n e. RR -> ( T ` n ) e. RR ) | 
						
							| 249 | 145 248 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. RR ) | 
						
							| 250 | 148 249 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` n ) ) e. RR ) | 
						
							| 251 | 250 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` n ) ) e. CC ) | 
						
							| 252 |  | 1red |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 253 | 145 252 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) | 
						
							| 254 | 79 | ffvelcdmi |  |-  ( ( n - 1 ) e. RR -> ( S ` ( n - 1 ) ) e. RR ) | 
						
							| 255 | 253 254 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` ( n - 1 ) ) e. RR ) | 
						
							| 256 | 255 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` ( n - 1 ) ) e. CC ) | 
						
							| 257 | 87 | ffvelcdmi |  |-  ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) e. RR ) | 
						
							| 258 | 253 257 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. RR ) | 
						
							| 259 | 148 258 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( n - 1 ) ) ) e. RR ) | 
						
							| 260 | 259 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( n - 1 ) ) ) e. CC ) | 
						
							| 261 | 247 251 256 260 | sub4d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( 2 x. ( T ` n ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( 2 x. ( T ` n ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 262 | 124 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) = ( 2 x. ( T ` n ) ) ) | 
						
							| 263 | 123 262 | oveq12d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) = ( ( S ` n ) - ( 2 x. ( T ` n ) ) ) ) | 
						
							| 264 | 263 | oveq1d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( 2 x. ( T ` n ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 265 |  | 2cnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) | 
						
							| 266 | 249 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. CC ) | 
						
							| 267 | 258 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. CC ) | 
						
							| 268 | 265 266 267 | subdid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) = ( ( 2 x. ( T ` n ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) | 
						
							| 269 | 268 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( 2 x. ( T ` n ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 270 | 261 264 269 | 3eqtr4d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 271 | 270 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 272 | 99 271 | sumeq12rdv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 273 | 246 272 | eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 274 | 157 159 | fsumcl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) | 
						
							| 275 | 93 274 | subnegd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) | 
						
							| 276 | 162 273 275 | 3eqtr3rd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 277 | 13 | relogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 278 | 277 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 279 | 67 278 | mulcomd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) = ( ( log ` x ) x. x ) ) | 
						
							| 280 | 276 279 | oveq12d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) | 
						
							| 281 | 147 255 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( S ` ( n - 1 ) ) ) e. RR ) | 
						
							| 282 | 249 258 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. RR ) | 
						
							| 283 | 148 282 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 284 | 281 283 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. RR ) | 
						
							| 285 | 108 284 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) | 
						
							| 286 | 157 285 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) | 
						
							| 287 | 286 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. CC ) | 
						
							| 288 | 5 11 | rplogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 289 | 288 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 290 | 13 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 291 | 287 278 67 289 290 | divdiv1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) | 
						
							| 292 | 280 291 | eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) ) | 
						
							| 293 | 292 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) ) ) | 
						
							| 294 | 72 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) | 
						
							| 295 | 294 | abscld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) | 
						
							| 296 | 295 277 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) | 
						
							| 297 | 108 281 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 298 | 157 297 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 299 | 298 288 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) e. RR ) | 
						
							| 300 | 296 299 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) e. RR ) | 
						
							| 301 | 300 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) e. CC ) | 
						
							| 302 | 287 278 289 | divcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) e. CC ) | 
						
							| 303 | 301 302 67 290 | divdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) ) ) | 
						
							| 304 | 296 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 305 | 299 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) e. CC ) | 
						
							| 306 | 304 305 302 | subsubd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) | 
						
							| 307 |  | 2cnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 308 | 266 267 | subcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. CC ) | 
						
							| 309 | 109 308 | mulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. CC ) | 
						
							| 310 | 157 307 309 | fsummulc2 |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 311 | 281 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( S ` ( n - 1 ) ) ) e. CC ) | 
						
							| 312 | 265 308 | mulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. CC ) | 
						
							| 313 | 311 312 | nncand |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) = ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) | 
						
							| 314 | 313 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 315 | 284 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. CC ) | 
						
							| 316 | 109 311 315 | subdid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) ) | 
						
							| 317 | 109 265 308 | mul12d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) = ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 318 | 314 316 317 | 3eqtr3d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 319 | 318 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 320 | 297 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. CC ) | 
						
							| 321 | 285 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. CC ) | 
						
							| 322 | 157 320 321 | fsumsub |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) ) | 
						
							| 323 | 310 319 322 | 3eqtr2rd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 324 | 323 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) / ( log ` x ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) / ( log ` x ) ) ) | 
						
							| 325 | 298 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. CC ) | 
						
							| 326 | 325 287 278 289 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) | 
						
							| 327 | 108 282 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 328 | 157 327 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) | 
						
							| 329 | 328 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. CC ) | 
						
							| 330 | 307 329 278 289 | div23d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 331 | 324 326 330 | 3eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) | 
						
							| 332 | 331 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 333 | 306 332 | eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 334 | 333 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) | 
						
							| 335 | 293 303 334 | 3eqtr2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) | 
						
							| 336 | 335 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) ) | 
						
							| 337 | 300 13 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) e. RR ) | 
						
							| 338 | 157 158 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) | 
						
							| 339 | 92 338 | readdcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) | 
						
							| 340 | 13 288 | rpmulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) | 
						
							| 341 | 339 340 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 342 | 1 2 | pntrlog2bndlem1 |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) ) e. <_O(1) | 
						
							| 343 | 342 | a1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 344 | 340 | rpcnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) | 
						
							| 345 | 340 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) | 
						
							| 346 | 93 274 344 345 | divdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 347 | 91 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) e. CC ) | 
						
							| 348 | 45 347 344 345 | divassd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 349 | 348 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 350 | 346 349 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 351 | 350 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) | 
						
							| 352 | 91 340 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 353 | 23 352 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) | 
						
							| 354 | 338 340 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 355 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 356 | 355 | a1i |  |-  ( T. -> ( 1 (,) +oo ) C_ RR ) | 
						
							| 357 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 358 | 23 8 32 | ltled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) <_ 1 ) | 
						
							| 359 | 358 | adantrr |  |-  ( ( T. /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) <_ 1 ) | 
						
							| 360 | 356 23 357 357 359 | ello1d |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( x / ( ( |_ ` x ) + 1 ) ) ) e. <_O(1) ) | 
						
							| 361 | 81 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) e. CC ) | 
						
							| 362 | 90 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( |_ ` x ) ) ) e. CC ) | 
						
							| 363 | 361 362 344 345 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 364 | 363 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) | 
						
							| 365 | 81 340 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 366 | 90 340 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 367 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 368 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) | 
						
							| 369 | 355 367 368 | sylancr |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) | 
						
							| 370 | 365 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / ( x x. ( log ` x ) ) ) e. CC ) | 
						
							| 371 | 81 13 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / x ) e. RR ) | 
						
							| 372 | 371 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / x ) e. CC ) | 
						
							| 373 | 307 278 | mulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) | 
						
							| 374 | 372 373 278 289 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( ( S ` x ) / x ) / ( log ` x ) ) - ( ( 2 x. ( log ` x ) ) / ( log ` x ) ) ) ) | 
						
							| 375 | 25 277 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) | 
						
							| 376 | 371 375 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) | 
						
							| 377 | 376 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) e. CC ) | 
						
							| 378 | 377 278 289 | divrecd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 379 | 361 67 278 290 289 | divdiv1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / x ) / ( log ` x ) ) = ( ( S ` x ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 380 | 307 278 289 | divcan4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( log ` x ) ) / ( log ` x ) ) = 2 ) | 
						
							| 381 | 379 380 | oveq12d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( S ` x ) / x ) / ( log ` x ) ) - ( ( 2 x. ( log ` x ) ) / ( log ` x ) ) ) = ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) ) | 
						
							| 382 | 374 378 381 | 3eqtr3rd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) = ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 383 | 382 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 384 | 8 288 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 385 | 13 | ex |  |-  ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 386 | 385 | ssrdv |  |-  ( T. -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 387 | 1 | selbergs |  |-  ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 388 | 387 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 389 | 386 388 | o1res2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 390 |  | divlogrlim |  |-  ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 | 
						
							| 391 |  | rlimo1 |  |-  ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 392 | 390 391 | mp1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 393 | 376 384 389 392 | o1mul2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 394 | 383 393 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) ) e. O(1) ) | 
						
							| 395 | 370 307 394 | o1dif |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( S ` x ) / ( x x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) ) | 
						
							| 396 | 369 395 | mpbird |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( S ` x ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 397 | 24 | a1i |  |-  ( T. -> 2 e. RR ) | 
						
							| 398 | 5 277 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) | 
						
							| 399 |  | 2rp |  |-  2 e. RR+ | 
						
							| 400 | 399 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) | 
						
							| 401 | 400 | rpge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) | 
						
							| 402 |  | flge1nn |  |-  ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 403 | 5 12 402 | syl2anc |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. NN ) | 
						
							| 404 | 403 | nnrpd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. RR+ ) | 
						
							| 405 |  | rpre |  |-  ( ( |_ ` x ) e. RR+ -> ( |_ ` x ) e. RR ) | 
						
							| 406 |  | eleq1 |  |-  ( a = ( |_ ` x ) -> ( a e. RR+ <-> ( |_ ` x ) e. RR+ ) ) | 
						
							| 407 |  | id |  |-  ( a = ( |_ ` x ) -> a = ( |_ ` x ) ) | 
						
							| 408 |  | fveq2 |  |-  ( a = ( |_ ` x ) -> ( log ` a ) = ( log ` ( |_ ` x ) ) ) | 
						
							| 409 | 407 408 | oveq12d |  |-  ( a = ( |_ ` x ) -> ( a x. ( log ` a ) ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) | 
						
							| 410 | 406 409 | ifbieq1d |  |-  ( a = ( |_ ` x ) -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) ) | 
						
							| 411 |  | ovex |  |-  ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) e. _V | 
						
							| 412 | 411 132 | ifex |  |-  if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) e. _V | 
						
							| 413 | 410 3 412 | fvmpt |  |-  ( ( |_ ` x ) e. RR -> ( T ` ( |_ ` x ) ) = if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) ) | 
						
							| 414 | 405 413 | syl |  |-  ( ( |_ ` x ) e. RR+ -> ( T ` ( |_ ` x ) ) = if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) ) | 
						
							| 415 |  | iftrue |  |-  ( ( |_ ` x ) e. RR+ -> if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) | 
						
							| 416 | 414 415 | eqtrd |  |-  ( ( |_ ` x ) e. RR+ -> ( T ` ( |_ ` x ) ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) | 
						
							| 417 | 404 416 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( |_ ` x ) ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) | 
						
							| 418 | 404 | relogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( |_ ` x ) ) e. RR ) | 
						
							| 419 | 16 | nn0ge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( |_ ` x ) ) | 
						
							| 420 | 403 | nnge1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ ( |_ ` x ) ) | 
						
							| 421 | 48 420 | logge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( log ` ( |_ ` x ) ) ) | 
						
							| 422 |  | flle |  |-  ( x e. RR -> ( |_ ` x ) <_ x ) | 
						
							| 423 | 5 422 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) <_ x ) | 
						
							| 424 | 404 13 | logled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) <_ x <-> ( log ` ( |_ ` x ) ) <_ ( log ` x ) ) ) | 
						
							| 425 | 423 424 | mpbid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( |_ ` x ) ) <_ ( log ` x ) ) | 
						
							| 426 | 48 5 418 277 419 421 423 425 | lemul12ad |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) <_ ( x x. ( log ` x ) ) ) | 
						
							| 427 | 417 426 | eqbrtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( |_ ` x ) ) <_ ( x x. ( log ` x ) ) ) | 
						
							| 428 | 89 398 25 401 427 | lemul2ad |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( |_ ` x ) ) ) <_ ( 2 x. ( x x. ( log ` x ) ) ) ) | 
						
							| 429 | 90 25 340 | ledivmul2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) <_ 2 <-> ( 2 x. ( T ` ( |_ ` x ) ) ) <_ ( 2 x. ( x x. ( log ` x ) ) ) ) ) | 
						
							| 430 | 428 429 | mpbird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) <_ 2 ) | 
						
							| 431 | 430 | adantrr |  |-  ( ( T. /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) <_ 2 ) | 
						
							| 432 | 356 366 357 397 431 | ello1d |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) | 
						
							| 433 |  | 0red |  |-  ( T. -> 0 e. RR ) | 
						
							| 434 | 48 418 419 421 | mulge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) | 
						
							| 435 | 434 417 | breqtrrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( T ` ( |_ ` x ) ) ) | 
						
							| 436 | 25 89 401 435 | mulge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 x. ( T ` ( |_ ` x ) ) ) ) | 
						
							| 437 | 90 340 436 | divge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 438 | 366 433 437 | o1lo12 |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) ) | 
						
							| 439 | 432 438 | mpbird |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 440 | 365 366 396 439 | o1sub2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. O(1) ) | 
						
							| 441 | 364 440 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 442 | 352 441 | o1lo1d |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) | 
						
							| 443 | 23 352 360 442 43 | lo1mul |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. <_O(1) ) | 
						
							| 444 | 1 | selbergsb |  |-  E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c | 
						
							| 445 |  | simpl |  |-  ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> c e. RR+ ) | 
						
							| 446 |  | simpr |  |-  ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) | 
						
							| 447 | 1 2 445 446 | pntrlog2bndlem3 |  |-  ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 448 | 447 | rexlimiva |  |-  ( E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 449 | 444 448 | mp1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 450 | 354 449 | o1lo1d |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) | 
						
							| 451 | 353 354 443 450 | lo1add |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. <_O(1) ) | 
						
							| 452 | 351 451 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) | 
						
							| 453 | 337 341 343 452 | lo1add |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. <_O(1) ) | 
						
							| 454 | 336 453 | eqeltrrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 455 | 454 | mptru |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) |