| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 | 1 | pntsval |  |-  ( A e. RR -> ( S ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) | 
						
							| 3 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) | 
						
							| 5 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 8 | 4 | nnrpd |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) | 
						
							| 9 | 8 | relogcld |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 11 |  | simpl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) | 
						
							| 12 | 11 4 | nndivred |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( A / n ) e. RR ) | 
						
							| 13 |  | chpcl |  |-  ( ( A / n ) e. RR -> ( psi ` ( A / n ) ) e. RR ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( psi ` ( A / n ) ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( psi ` ( A / n ) ) e. CC ) | 
						
							| 16 | 7 10 15 | adddid |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) ) | 
						
							| 17 | 16 | sumeq2dv |  |-  ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( n = m -> ( Lam ` n ) = ( Lam ` m ) ) | 
						
							| 19 |  | oveq2 |  |-  ( n = m -> ( A / n ) = ( A / m ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( n = m -> ( psi ` ( A / n ) ) = ( psi ` ( A / m ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( n = m -> ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) = ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) ) | 
						
							| 22 | 21 | cbvsumv |  |-  sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) | 
						
							| 23 |  | fzfid |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / m ) ) ) e. Fin ) | 
						
							| 24 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) | 
						
							| 25 | 24 | adantl |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) | 
						
							| 26 |  | vmacl |  |-  ( m e. NN -> ( Lam ` m ) e. RR ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 28 | 27 | recnd |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` m ) e. CC ) | 
						
							| 29 |  | elfznn |  |-  ( k e. ( 1 ... ( |_ ` ( A / m ) ) ) -> k e. NN ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> k e. NN ) | 
						
							| 31 |  | vmacl |  |-  ( k e. NN -> ( Lam ` k ) e. RR ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( Lam ` k ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( Lam ` k ) e. CC ) | 
						
							| 34 | 23 28 33 | fsummulc2 |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` m ) x. sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` k ) ) ) | 
						
							| 35 |  | simpl |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) | 
						
							| 36 | 35 25 | nndivred |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( A / m ) e. RR ) | 
						
							| 37 |  | chpval |  |-  ( ( A / m ) e. RR -> ( psi ` ( A / m ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( psi ` ( A / m ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = ( ( Lam ` m ) x. sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) ) | 
						
							| 40 | 30 | nncnd |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> k e. CC ) | 
						
							| 41 | 24 | ad2antlr |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> m e. NN ) | 
						
							| 42 | 41 | nncnd |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> m e. CC ) | 
						
							| 43 | 41 | nnne0d |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> m =/= 0 ) | 
						
							| 44 | 40 42 43 | divcan3d |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( ( m x. k ) / m ) = k ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( Lam ` ( ( m x. k ) / m ) ) = ( Lam ` k ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) = ( ( Lam ` m ) x. ( Lam ` k ) ) ) | 
						
							| 47 | 46 | sumeq2dv |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` k ) ) ) | 
						
							| 48 | 34 39 47 | 3eqtr4d |  |-  ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) | 
						
							| 49 | 48 | sumeq2dv |  |-  ( A e. RR -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) | 
						
							| 50 |  | fvoveq1 |  |-  ( n = ( m x. k ) -> ( Lam ` ( n / m ) ) = ( Lam ` ( ( m x. k ) / m ) ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( n = ( m x. k ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) = ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) | 
						
							| 52 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 53 |  | ssrab2 |  |-  { y e. NN | y || n } C_ NN | 
						
							| 54 |  | simpr |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> m e. { y e. NN | y || n } ) | 
						
							| 55 | 53 54 | sselid |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> m e. NN ) | 
						
							| 56 | 55 26 | syl |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( Lam ` m ) e. RR ) | 
						
							| 57 |  | dvdsdivcl |  |-  ( ( n e. NN /\ m e. { y e. NN | y || n } ) -> ( n / m ) e. { y e. NN | y || n } ) | 
						
							| 58 | 4 57 | sylan |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( n / m ) e. { y e. NN | y || n } ) | 
						
							| 59 | 53 58 | sselid |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( n / m ) e. NN ) | 
						
							| 60 |  | vmacl |  |-  ( ( n / m ) e. NN -> ( Lam ` ( n / m ) ) e. RR ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( Lam ` ( n / m ) ) e. RR ) | 
						
							| 62 | 56 61 | remulcld |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. RR ) | 
						
							| 63 | 62 | recnd |  |-  ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. CC ) | 
						
							| 64 | 63 | anasss |  |-  ( ( A e. RR /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. { y e. NN | y || n } ) ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. CC ) | 
						
							| 65 | 51 52 64 | dvdsflsumcom |  |-  ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) | 
						
							| 66 | 49 65 | eqtr4d |  |-  ( A e. RR -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) | 
						
							| 67 | 22 66 | eqtrid |  |-  ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( A e. RR -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 69 |  | fzfid |  |-  ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin ) | 
						
							| 70 | 7 10 | mulcld |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) | 
						
							| 71 | 7 15 | mulcld |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) e. CC ) | 
						
							| 72 | 69 70 71 | fsumadd |  |-  ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) ) | 
						
							| 73 |  | fzfid |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... n ) e. Fin ) | 
						
							| 74 |  | dvdsssfz1 |  |-  ( n e. NN -> { y e. NN | y || n } C_ ( 1 ... n ) ) | 
						
							| 75 | 4 74 | syl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { y e. NN | y || n } C_ ( 1 ... n ) ) | 
						
							| 76 | 73 75 | ssfid |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { y e. NN | y || n } e. Fin ) | 
						
							| 77 | 76 62 | fsumrecl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. RR ) | 
						
							| 78 | 77 | recnd |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. CC ) | 
						
							| 79 | 69 70 78 | fsumadd |  |-  ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 80 | 68 72 79 | 3eqtr4d |  |-  ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) | 
						
							| 81 | 2 17 80 | 3eqtrd |  |-  ( A e. RR -> ( S ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |