| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 | ⊢ 𝑆  =  ( 𝑎  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) ) ) | 
						
							| 2 | 1 | pntsval | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 3 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 5 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 8 | 4 | nnrpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 9 | 8 | relogcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 12 | 11 4 | nndivred | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 𝐴  /  𝑛 )  ∈  ℝ ) | 
						
							| 13 |  | chpcl | ⊢ ( ( 𝐴  /  𝑛 )  ∈  ℝ  →  ( ψ ‘ ( 𝐴  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ψ ‘ ( 𝐴  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ψ ‘ ( 𝐴  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 16 | 7 10 15 | adddid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 17 | 16 | sumeq2dv | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( Λ ‘ 𝑛 )  =  ( Λ ‘ 𝑚 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴  /  𝑛 )  =  ( 𝐴  /  𝑚 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ψ ‘ ( 𝐴  /  𝑛 ) )  =  ( ψ ‘ ( 𝐴  /  𝑚 ) ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝐴  /  𝑚 ) ) ) ) | 
						
							| 22 | 21 | cbvsumv | ⊢ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝐴  /  𝑚 ) ) ) | 
						
							| 23 |  | fzfid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) )  ∈  Fin ) | 
						
							| 24 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 26 |  | vmacl | ⊢ ( 𝑚  ∈  ℕ  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 28 | 27 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 29 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 31 |  | vmacl | ⊢ ( 𝑘  ∈  ℕ  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 33 | 32 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  ( Λ ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 34 | 23 28 33 | fsummulc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( Λ ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ 𝑘 ) ) ) | 
						
							| 35 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 36 | 35 25 | nndivred | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 𝐴  /  𝑚 )  ∈  ℝ ) | 
						
							| 37 |  | chpval | ⊢ ( ( 𝐴  /  𝑚 )  ∈  ℝ  →  ( ψ ‘ ( 𝐴  /  𝑚 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( Λ ‘ 𝑘 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ψ ‘ ( 𝐴  /  𝑚 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( Λ ‘ 𝑘 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝐴  /  𝑚 ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( Λ ‘ 𝑘 ) ) ) | 
						
							| 40 | 30 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 41 | 24 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 42 | 41 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 43 | 41 | nnne0d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  𝑚  ≠  0 ) | 
						
							| 44 | 40 42 43 | divcan3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  ( ( 𝑚  ·  𝑘 )  /  𝑚 )  =  𝑘 ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) )  =  ( Λ ‘ 𝑘 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ 𝑘 ) ) ) | 
						
							| 47 | 46 | sumeq2dv | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ 𝑘 ) ) ) | 
						
							| 48 | 34 39 47 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝐴  /  𝑚 ) ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) ) ) | 
						
							| 49 | 48 | sumeq2dv | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝐴  /  𝑚 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) ) ) | 
						
							| 50 |  | fvoveq1 | ⊢ ( 𝑛  =  ( 𝑚  ·  𝑘 )  →  ( Λ ‘ ( 𝑛  /  𝑚 ) )  =  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝑛  =  ( 𝑚  ·  𝑘 )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) ) ) | 
						
							| 52 |  | id | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) | 
						
							| 53 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ℕ | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 55 | 53 54 | sselid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  𝑚  ∈  ℕ ) | 
						
							| 56 | 55 26 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 57 |  | dvdsdivcl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑚 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 58 | 4 57 | sylan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑚 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 59 | 53 58 | sselid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑚 )  ∈  ℕ ) | 
						
							| 60 |  | vmacl | ⊢ ( ( 𝑛  /  𝑚 )  ∈  ℕ  →  ( Λ ‘ ( 𝑛  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( Λ ‘ ( 𝑛  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 62 | 56 61 | remulcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 63 | 62 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 64 | 63 | anasss | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 65 | 51 52 64 | dvdsflsumcom | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( ( 𝑚  ·  𝑘 )  /  𝑚 ) ) ) ) | 
						
							| 66 | 49 65 | eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝐴  /  𝑚 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 67 | 22 66 | eqtrid | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) | 
						
							| 69 |  | fzfid | ⊢ ( 𝐴  ∈  ℝ  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 70 | 7 10 | mulcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 71 | 7 15 | mulcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 72 | 69 70 71 | fsumadd | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 73 |  | fzfid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 74 |  | dvdsssfz1 | ⊢ ( 𝑛  ∈  ℕ  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 75 | 4 74 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 76 | 73 75 | ssfid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ∈  Fin ) | 
						
							| 77 | 76 62 | fsumrecl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 78 | 77 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 79 | 69 70 78 | fsumadd | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) | 
						
							| 80 | 68 72 79 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) | 
						
							| 81 | 2 17 80 | 3eqtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) |