| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
|
| 2 |
1
|
pntsval |
|
| 3 |
|
elfznn |
|
| 4 |
3
|
adantl |
|
| 5 |
|
vmacl |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
recnd |
|
| 8 |
4
|
nnrpd |
|
| 9 |
8
|
relogcld |
|
| 10 |
9
|
recnd |
|
| 11 |
|
simpl |
|
| 12 |
11 4
|
nndivred |
|
| 13 |
|
chpcl |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
recnd |
|
| 16 |
7 10 15
|
adddid |
|
| 17 |
16
|
sumeq2dv |
|
| 18 |
|
fveq2 |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
fveq2d |
|
| 21 |
18 20
|
oveq12d |
|
| 22 |
21
|
cbvsumv |
|
| 23 |
|
fzfid |
|
| 24 |
|
elfznn |
|
| 25 |
24
|
adantl |
|
| 26 |
|
vmacl |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
recnd |
|
| 29 |
|
elfznn |
|
| 30 |
29
|
adantl |
|
| 31 |
|
vmacl |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
recnd |
|
| 34 |
23 28 33
|
fsummulc2 |
|
| 35 |
|
simpl |
|
| 36 |
35 25
|
nndivred |
|
| 37 |
|
chpval |
|
| 38 |
36 37
|
syl |
|
| 39 |
38
|
oveq2d |
|
| 40 |
30
|
nncnd |
|
| 41 |
24
|
ad2antlr |
|
| 42 |
41
|
nncnd |
|
| 43 |
41
|
nnne0d |
|
| 44 |
40 42 43
|
divcan3d |
|
| 45 |
44
|
fveq2d |
|
| 46 |
45
|
oveq2d |
|
| 47 |
46
|
sumeq2dv |
|
| 48 |
34 39 47
|
3eqtr4d |
|
| 49 |
48
|
sumeq2dv |
|
| 50 |
|
fvoveq1 |
|
| 51 |
50
|
oveq2d |
|
| 52 |
|
id |
|
| 53 |
|
ssrab2 |
|
| 54 |
|
simpr |
|
| 55 |
53 54
|
sselid |
|
| 56 |
55 26
|
syl |
|
| 57 |
|
dvdsdivcl |
|
| 58 |
4 57
|
sylan |
|
| 59 |
53 58
|
sselid |
|
| 60 |
|
vmacl |
|
| 61 |
59 60
|
syl |
|
| 62 |
56 61
|
remulcld |
|
| 63 |
62
|
recnd |
|
| 64 |
63
|
anasss |
|
| 65 |
51 52 64
|
dvdsflsumcom |
|
| 66 |
49 65
|
eqtr4d |
|
| 67 |
22 66
|
eqtrid |
|
| 68 |
67
|
oveq2d |
|
| 69 |
|
fzfid |
|
| 70 |
7 10
|
mulcld |
|
| 71 |
7 15
|
mulcld |
|
| 72 |
69 70 71
|
fsumadd |
|
| 73 |
|
fzfid |
|
| 74 |
|
dvdsssfz1 |
|
| 75 |
4 74
|
syl |
|
| 76 |
73 75
|
ssfid |
|
| 77 |
76 62
|
fsumrecl |
|
| 78 |
77
|
recnd |
|
| 79 |
69 70 78
|
fsumadd |
|
| 80 |
68 72 79
|
3eqtr4d |
|
| 81 |
2 17 80
|
3eqtrd |
|