| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 | ⊢ 𝑆  =  ( 𝑎  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 3 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 4 | 2 | selberg34r | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  𝑂(1) | 
						
							| 5 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 7 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 8 | 7 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 9 |  | 1red | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 10 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑥 ) | 
						
							| 13 | 9 6 12 | ltled | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 14 | 6 8 13 | rpgecld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 15 | 2 | pntrf | ⊢ 𝑅 : ℝ+ ⟶ ℝ | 
						
							| 16 | 15 | ffvelcdmi | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑅 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑅 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 18 | 14 | relogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 19 | 17 18 | remulcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 20 |  | fzfid | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 21 | 14 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 22 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 24 | 23 | nnrpd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 25 | 21 24 | rpdivcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 26 | 15 | ffvelcdmi | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ+  →  ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 28 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 29 |  | dvdsssfz1 | ⊢ ( 𝑛  ∈  ℕ  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 30 | 23 29 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 31 | 28 30 | ssfid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ∈  Fin ) | 
						
							| 32 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ℕ | 
						
							| 33 |  | simpr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 34 | 32 33 | sselid | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  𝑚  ∈  ℕ ) | 
						
							| 35 |  | vmacl | ⊢ ( 𝑚  ∈  ℕ  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 37 |  | dvdsdivcl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑚 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 38 | 23 37 | sylan | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑚 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 39 | 32 38 | sselid | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑚 )  ∈  ℕ ) | 
						
							| 40 |  | vmacl | ⊢ ( ( 𝑛  /  𝑚 )  ∈  ℕ  →  ( Λ ‘ ( 𝑛  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( Λ ‘ ( 𝑛  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 42 | 36 41 | remulcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 43 | 31 42 | fsumrecl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 44 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 45 | 23 44 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 46 | 24 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 47 | 45 46 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 48 | 43 47 | resubcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 49 | 27 48 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 50 | 20 49 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 51 | 6 12 | rplogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 52 | 50 51 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 53 | 19 52 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 54 | 53 14 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 55 | 54 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 56 | 55 | lo1o12 | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 57 | 4 56 | mpbii | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) )  ∈  ≤𝑂(1) ) | 
						
							| 58 | 55 | abscld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  ℝ ) | 
						
							| 59 | 17 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑅 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 60 | 59 | abscld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 61 | 60 18 | remulcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 62 | 27 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 63 | 62 | abscld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 64 | 23 | nnred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 65 | 1 | pntsf | ⊢ 𝑆 : ℝ ⟶ ℝ | 
						
							| 66 | 65 | ffvelcdmi | ⊢ ( 𝑛  ∈  ℝ  →  ( 𝑆 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 67 | 64 66 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 68 |  | 1red | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 69 | 64 68 | resubcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 70 | 65 | ffvelcdmi | ⊢ ( ( 𝑛  −  1 )  ∈  ℝ  →  ( 𝑆 ‘ ( 𝑛  −  1 ) )  ∈  ℝ ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ ( 𝑛  −  1 ) )  ∈  ℝ ) | 
						
							| 72 | 67 71 | resubcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) )  ∈  ℝ ) | 
						
							| 73 | 63 72 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  ∈  ℝ ) | 
						
							| 74 | 20 73 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  ∈  ℝ ) | 
						
							| 75 | 74 51 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 76 | 61 75 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 77 | 76 14 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 78 | 18 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 79 | 59 78 | mulcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 80 | 50 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 81 | 51 | rpne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ≠  0 ) | 
						
							| 82 | 80 78 81 | divcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 83 | 79 82 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 84 | 83 | abscld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  ∈  ℝ ) | 
						
							| 85 | 80 | abscld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 86 | 85 51 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 87 | 61 86 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 88 | 49 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 89 | 88 | abscld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 90 | 20 89 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 91 | 20 88 | fsumabs | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 92 | 48 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 93 | 62 92 | absmuld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  =  ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 94 | 92 | abscld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 95 | 62 | absge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 96 | 43 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 97 | 47 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 98 | 96 97 | abs2dif2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ≤  ( ( abs ‘ Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) )  +  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) ) | 
						
							| 99 | 71 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 100 | 96 97 | addcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 101 | 99 100 | pncan2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑆 ‘ ( 𝑛  −  1 ) )  +  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) )  =  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 102 |  | elfzuz | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 104 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  𝑘  ∈  ℕ ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 106 |  | vmacl | ⊢ ( 𝑘  ∈  ℕ  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 108 | 105 | nnrpd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℝ+ ) | 
						
							| 109 | 108 | relogcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 110 | 107 109 | remulcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 111 |  | fzfid | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 1 ... 𝑘 )  ∈  Fin ) | 
						
							| 112 |  | dvdsssfz1 | ⊢ ( 𝑘  ∈  ℕ  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ( 1 ... 𝑘 ) ) | 
						
							| 113 | 105 112 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ( 1 ... 𝑘 ) ) | 
						
							| 114 | 111 113 | ssfid | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ∈  Fin ) | 
						
							| 115 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ℕ | 
						
							| 116 |  | simpr | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 117 | 115 116 | sselid | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  𝑚  ∈  ℕ ) | 
						
							| 118 | 117 35 | syl | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 119 |  | dvdsdivcl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( 𝑘  /  𝑚 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 120 | 105 119 | sylan | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( 𝑘  /  𝑚 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 121 | 115 120 | sselid | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( 𝑘  /  𝑚 )  ∈  ℕ ) | 
						
							| 122 |  | vmacl | ⊢ ( ( 𝑘  /  𝑚 )  ∈  ℕ  →  ( Λ ‘ ( 𝑘  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 123 | 121 122 | syl | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( Λ ‘ ( 𝑘  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 124 | 118 123 | remulcld | ⊢ ( ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 125 | 114 124 | fsumrecl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 126 | 110 125 | readdcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  ∈  ℝ ) | 
						
							| 127 | 126 | recnd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  ∈  ℂ ) | 
						
							| 128 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( Λ ‘ 𝑘 )  =  ( Λ ‘ 𝑛 ) ) | 
						
							| 129 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( log ‘ 𝑘 )  =  ( log ‘ 𝑛 ) ) | 
						
							| 130 | 128 129 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) | 
						
							| 131 |  | breq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑦  ∥  𝑘  ↔  𝑦  ∥  𝑛 ) ) | 
						
							| 132 | 131 | rabbidv | ⊢ ( 𝑘  =  𝑛  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  =  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 133 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑛  →  ( Λ ‘ ( 𝑘  /  𝑚 ) )  =  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) | 
						
							| 134 | 133 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( 𝑘  =  𝑛  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 136 | 132 135 | sumeq12rdv | ⊢ ( 𝑘  =  𝑛  →  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) )  =  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 137 | 130 136 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) | 
						
							| 138 | 103 127 137 | fsumm1 | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  +  ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) ) | 
						
							| 139 | 1 | pntsval2 | ⊢ ( 𝑛  ∈  ℝ  →  ( 𝑆 ‘ 𝑛 )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑛 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 140 | 64 139 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ 𝑛 )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑛 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 141 | 23 | nnzd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 142 |  | flid | ⊢ ( 𝑛  ∈  ℤ  →  ( ⌊ ‘ 𝑛 )  =  𝑛 ) | 
						
							| 143 | 141 142 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ 𝑛 )  =  𝑛 ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ 𝑛 ) )  =  ( 1 ... 𝑛 ) ) | 
						
							| 145 | 144 | sumeq1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑛 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 146 | 140 145 | eqtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ 𝑛 )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 147 | 1 | pntsval2 | ⊢ ( ( 𝑛  −  1 )  ∈  ℝ  →  ( 𝑆 ‘ ( 𝑛  −  1 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝑛  −  1 ) ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 148 | 69 147 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ ( 𝑛  −  1 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝑛  −  1 ) ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 149 |  | 1zzd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℤ ) | 
						
							| 150 | 141 149 | zsubcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  −  1 )  ∈  ℤ ) | 
						
							| 151 |  | flid | ⊢ ( ( 𝑛  −  1 )  ∈  ℤ  →  ( ⌊ ‘ ( 𝑛  −  1 ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 152 | 150 151 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑛  −  1 ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 153 | 152 | oveq2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑛  −  1 ) ) )  =  ( 1 ... ( 𝑛  −  1 ) ) ) | 
						
							| 154 | 153 | sumeq1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ ( 𝑛  −  1 ) ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 155 | 148 154 | eqtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ ( 𝑛  −  1 ) )  =  Σ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) ) ) | 
						
							| 156 | 96 97 | addcomd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) | 
						
							| 157 | 155 156 | oveq12d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑆 ‘ ( 𝑛  −  1 ) )  +  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑘  /  𝑚 ) ) ) )  +  ( ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  +  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) ) ) | 
						
							| 158 | 138 146 157 | 3eqtr4d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ 𝑛 )  =  ( ( 𝑆 ‘ ( 𝑛  −  1 ) )  +  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) ) | 
						
							| 159 | 158 | oveq1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) )  =  ( ( ( 𝑆 ‘ ( 𝑛  −  1 ) )  +  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 160 |  | vmage0 | ⊢ ( 𝑚  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑚 ) ) | 
						
							| 161 | 34 160 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  0  ≤  ( Λ ‘ 𝑚 ) ) | 
						
							| 162 |  | vmage0 | ⊢ ( ( 𝑛  /  𝑚 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) | 
						
							| 163 | 39 162 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  0  ≤  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) | 
						
							| 164 | 36 41 161 163 | mulge0d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  0  ≤  ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 165 | 31 42 164 | fsumge0 | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 166 | 43 165 | absidd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) )  =  Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) ) | 
						
							| 167 |  | vmage0 | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 168 | 23 167 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 169 | 23 | nnge1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  𝑛 ) | 
						
							| 170 | 64 169 | logge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( log ‘ 𝑛 ) ) | 
						
							| 171 | 45 46 168 170 | mulge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) | 
						
							| 172 | 47 171 | absidd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) | 
						
							| 173 | 166 172 | oveq12d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) )  +  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  =  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 174 | 101 159 173 | 3eqtr4d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) )  =  ( ( abs ‘ Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) ) )  +  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) ) | 
						
							| 175 | 98 174 | breqtrrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  ≤  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 176 | 94 72 63 95 175 | lemul2ad | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ≤  ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 177 | 93 176 | eqbrtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ≤  ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 178 | 20 89 73 177 | fsumle | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 179 | 85 90 74 91 178 | letrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 180 | 85 74 51 179 | lediv1dd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 181 | 86 75 61 180 | lesub2dd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 182 | 59 78 | absmuld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( abs ‘ ( log ‘ 𝑥 ) ) ) ) | 
						
							| 183 | 6 13 | logge0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 184 | 18 183 | absidd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( log ‘ 𝑥 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 185 | 184 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( abs ‘ ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 186 | 182 185 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 187 | 80 78 81 | absdivd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( abs ‘ ( log ‘ 𝑥 ) ) ) ) | 
						
							| 188 | 184 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( abs ‘ ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 189 | 187 188 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 190 | 186 189 | oveq12d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  −  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  =  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 191 | 79 82 | abs2difd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  −  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  ≤  ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 192 | 190 191 | eqbrtrrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 193 | 76 87 84 181 192 | letrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 194 | 76 84 14 193 | lediv1dd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 )  ≤  ( ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  /  𝑥 ) ) | 
						
							| 195 | 53 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 196 | 6 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 197 | 14 | rpne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ≠  0 ) | 
						
							| 198 | 195 196 197 | absdivd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  =  ( ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  /  ( abs ‘ 𝑥 ) ) ) | 
						
							| 199 | 14 | rpge0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  𝑥 ) | 
						
							| 200 | 6 199 | absidd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ 𝑥 )  =  𝑥 ) | 
						
							| 201 | 200 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  /  ( abs ‘ 𝑥 ) )  =  ( ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  /  𝑥 ) ) | 
						
							| 202 | 198 201 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  =  ( ( abs ‘ ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) )  /  𝑥 ) ) | 
						
							| 203 | 194 202 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 )  ≤  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) ) | 
						
							| 204 | 203 | adantrr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 1 (,) +∞ )  ∧  1  ≤  𝑥 ) )  →  ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 )  ≤  ( abs ‘ ( ( ( ( 𝑅 ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ ( 𝑥  /  𝑛 ) )  ·  ( Σ 𝑚  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑚 )  ·  ( Λ ‘ ( 𝑛  /  𝑚 ) ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) ) | 
						
							| 205 | 3 57 58 77 204 | lo1le | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  ≤𝑂(1) ) | 
						
							| 206 | 205 | mptru | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) )  ·  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( ( 𝑆 ‘ 𝑛 )  −  ( 𝑆 ‘ ( 𝑛  −  1 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  ≤𝑂(1) |