Metamath Proof Explorer


Theorem selberg3r

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of Shapiro, p. 429. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypothesis pntrval.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
Assertion selberg3r ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) ∈ 𝑂(1)

Proof

Step Hyp Ref Expression
1 pntrval.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
2 elioore ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ )
3 2 adantl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ )
4 1rp 1 ∈ ℝ+
5 4 a1i ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ )
6 1red ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ )
7 eliooord ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥𝑥 < +∞ ) )
8 7 adantl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥𝑥 < +∞ ) )
9 8 simpld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 )
10 6 3 9 ltled ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 )
11 3 5 10 rpgecld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ )
12 11 relogcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ )
13 12 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ )
14 13 2timesd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( log ‘ 𝑥 ) ) = ( ( log ‘ 𝑥 ) + ( log ‘ 𝑥 ) ) )
15 14 oveq2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( ( log ‘ 𝑥 ) + ( log ‘ 𝑥 ) ) ) )
16 chpcl ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ )
17 3 16 syl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ψ ‘ 𝑥 ) ∈ ℝ )
18 17 12 remulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℝ )
19 2re 2 ∈ ℝ
20 19 a1i ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℝ )
21 3 9 rplogcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ )
22 20 21 rerpdivcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 / ( log ‘ 𝑥 ) ) ∈ ℝ )
23 fzfid ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin )
24 elfznn ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ )
25 24 adantl ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ )
26 vmacl ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ )
27 25 26 syl ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ )
28 3 adantr ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ )
29 28 25 nndivred ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ )
30 chpcl ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
31 29 30 syl ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
32 27 31 remulcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ )
33 25 nnrpd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ )
34 33 relogcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ )
35 32 34 remulcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ )
36 23 35 fsumrecl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ )
37 22 36 remulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℝ )
38 18 37 readdcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℝ )
39 38 11 rerpdivcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ∈ ℝ )
40 39 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ∈ ℂ )
41 40 13 13 subsub4d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( log ‘ 𝑥 ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( ( log ‘ 𝑥 ) + ( log ‘ 𝑥 ) ) ) )
42 15 41 eqtr4d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( log ‘ 𝑥 ) ) )
43 42 oveq1d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) = ( ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( log ‘ 𝑥 ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) )
44 40 13 subcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) ∈ ℂ )
45 2cn 2 ∈ ℂ
46 45 a1i ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℂ )
47 21 rpne0d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 )
48 46 13 47 divcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 / ( log ‘ 𝑥 ) ) ∈ ℂ )
49 27 25 nndivred ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ )
50 49 34 remulcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℝ )
51 23 50 fsumrecl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℝ )
52 51 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
53 48 52 mulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ )
54 44 53 13 nnncan2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( log ‘ 𝑥 ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) = ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) )
55 1 pntrf 𝑅 : ℝ+ ⟶ ℝ
56 55 ffvelrni ( 𝑥 ∈ ℝ+ → ( 𝑅𝑥 ) ∈ ℝ )
57 11 56 syl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑅𝑥 ) ∈ ℝ )
58 57 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑅𝑥 ) ∈ ℂ )
59 58 13 mulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ )
60 37 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ )
61 59 60 addcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℂ )
62 3 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℂ )
63 62 53 mulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℂ )
64 11 rpne0d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ≠ 0 )
65 61 63 62 64 divsubdird ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) / 𝑥 ) = ( ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) )
66 59 60 63 addsubassd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) ) )
67 36 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
68 62 52 mulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ )
69 48 67 68 subdid ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) )
70 50 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
71 23 62 70 fsummulc2 ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) )
72 71 oveq2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) )
73 35 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
74 62 adantr ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ )
75 74 70 mulcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ )
76 23 73 75 fsumsub ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) )
77 72 76 eqtr4d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) )
78 27 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ )
79 31 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ )
80 34 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ )
81 78 79 80 mul32d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) )
82 25 nncnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ )
83 25 nnne0d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 )
84 78 80 82 83 div23d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) / 𝑛 ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) )
85 84 oveq2d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) / 𝑛 ) ) = ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) )
86 78 80 mulcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
87 74 86 82 83 div12d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) / 𝑛 ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑥 / 𝑛 ) ) )
88 85 87 eqtr3d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑥 / 𝑛 ) ) )
89 81 88 oveq12d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑥 / 𝑛 ) ) ) )
90 11 adantr ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ )
91 90 33 rpdivcld ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
92 1 pntrval ( ( 𝑥 / 𝑛 ) ∈ ℝ+ → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) = ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) − ( 𝑥 / 𝑛 ) ) )
93 91 92 syl ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) = ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) − ( 𝑥 / 𝑛 ) ) )
94 93 oveq2d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) − ( 𝑥 / 𝑛 ) ) ) )
95 29 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℂ )
96 86 79 95 subdid ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) − ( 𝑥 / 𝑛 ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑥 / 𝑛 ) ) ) )
97 94 96 eqtrd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑥 / 𝑛 ) ) ) )
98 89 97 eqtr4d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) )
99 55 ffvelrni ( ( 𝑥 / 𝑛 ) ∈ ℝ+ → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
100 91 99 syl ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
101 100 recnd ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ )
102 78 101 80 mul32d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) )
103 98 102 eqtr4d ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) )
104 103 sumeq2dv ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) )
105 77 104 eqtrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) )
106 105 oveq2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) )
107 48 62 52 mul12d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) )
108 107 oveq2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) )
109 69 106 108 3eqtr3rd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) )
110 109 oveq2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) ) = ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) )
111 66 110 eqtrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) )
112 111 oveq1d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) ) / 𝑥 ) = ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) )
113 1 pntrval ( 𝑥 ∈ ℝ+ → ( 𝑅𝑥 ) = ( ( ψ ‘ 𝑥 ) − 𝑥 ) )
114 11 113 syl ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑅𝑥 ) = ( ( ψ ‘ 𝑥 ) − 𝑥 ) )
115 114 oveq1d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) = ( ( ( ψ ‘ 𝑥 ) − 𝑥 ) · ( log ‘ 𝑥 ) ) )
116 17 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ψ ‘ 𝑥 ) ∈ ℂ )
117 116 62 13 subdird ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ψ ‘ 𝑥 ) − 𝑥 ) · ( log ‘ 𝑥 ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) )
118 115 117 eqtrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) )
119 118 oveq1d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) )
120 18 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ )
121 62 13 mulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( log ‘ 𝑥 ) ) ∈ ℂ )
122 120 60 121 addsubd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) )
123 119 122 eqtr4d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) )
124 123 oveq1d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) / 𝑥 ) )
125 38 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℂ )
126 125 121 62 64 divsubdird ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) / 𝑥 ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( ( 𝑥 · ( log ‘ 𝑥 ) ) / 𝑥 ) ) )
127 13 62 64 divcan3d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝑥 · ( log ‘ 𝑥 ) ) / 𝑥 ) = ( log ‘ 𝑥 ) )
128 127 oveq2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( ( 𝑥 · ( log ‘ 𝑥 ) ) / 𝑥 ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) )
129 126 128 eqtrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) − ( 𝑥 · ( log ‘ 𝑥 ) ) ) / 𝑥 ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) )
130 124 129 eqtrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) )
131 53 62 64 divcan3d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) )
132 130 131 oveq12d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( ( 𝑥 · ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) = ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) )
133 65 112 132 3eqtr3rd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) )
134 43 54 133 3eqtrrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) = ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) )
135 134 mpteq2dva ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) ) )
136 20 12 remulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℝ )
137 39 136 resubcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ∈ ℝ )
138 22 51 remulcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ∈ ℝ )
139 138 12 resubcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ∈ ℝ )
140 selberg3 ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1)
141 140 a1i ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) )
142 20 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℂ )
143 51 21 rerpdivcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ )
144 143 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ )
145 12 rehalfcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℝ )
146 145 recnd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℂ )
147 142 144 146 subdid ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) − ( 2 · ( ( log ‘ 𝑥 ) / 2 ) ) ) )
148 142 13 52 47 div32d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) )
149 148 eqcomd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) )
150 2ne0 2 ≠ 0
151 150 a1i ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ≠ 0 )
152 13 142 151 divcan2d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( ( log ‘ 𝑥 ) / 2 ) ) = ( log ‘ 𝑥 ) )
153 149 152 oveq12d ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) − ( 2 · ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) )
154 147 153 eqtrd ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) )
155 154 mpteq2dva ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) )
156 143 145 resubcld ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ )
157 ioossre ( 1 (,) +∞ ) ⊆ ℝ
158 o1const ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 2 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 2 ) ∈ 𝑂(1) )
159 157 45 158 mp2an ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 2 ) ∈ 𝑂(1)
160 159 a1i ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 2 ) ∈ 𝑂(1) )
161 vmalogdivsum ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1)
162 161 a1i ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) )
163 20 156 160 162 o1mul2 ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) ∈ 𝑂(1) )
164 155 163 eqeltrrd ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
165 137 139 141 164 o1sub2 ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) )
166 135 165 eqeltrd ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) ∈ 𝑂(1) )
167 166 mptru ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( 𝑅𝑥 ) · ( log ‘ 𝑥 ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) ∈ 𝑂(1)