| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 3 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 4 | 3 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 5 |  | 1red | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 6 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑥 ) | 
						
							| 9 | 5 2 8 | ltled | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 10 | 2 4 9 | rpgecld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 11 | 10 | ex | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ+ ) ) | 
						
							| 12 | 11 | ssrdv | ⊢ ( ⊤  →  ( 1 (,) +∞ )  ⊆  ℝ+ ) | 
						
							| 13 |  | vmadivsum | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) | 
						
							| 14 | 13 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 15 | 12 14 | o1res2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 16 |  | fzfid | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 17 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 19 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 21 | 20 18 | nndivred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 23 | 16 22 | fsumcl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 24 | 10 | relogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 26 | 23 25 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 27 | 18 | nnrpd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 28 | 27 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 29 | 21 28 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 30 | 16 29 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 31 | 2 8 | rplogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 32 | 30 31 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 33 | 24 | rehalfcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℝ ) | 
						
							| 34 | 32 33 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℂ ) | 
						
							| 36 | 33 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℂ ) | 
						
							| 37 | 23 36 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℂ ) | 
						
							| 38 | 32 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 39 | 37 38 36 | nnncan2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 23 36 36 | subsub4d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( ( log ‘ 𝑥 )  /  2 )  +  ( ( log ‘ 𝑥 )  /  2 ) ) ) ) | 
						
							| 41 | 25 | 2halvesd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( log ‘ 𝑥 )  /  2 )  +  ( ( log ‘ 𝑥 )  /  2 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( ( log ‘ 𝑥 )  /  2 )  +  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 43 | 40 42 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) ) | 
						
							| 45 | 23 36 38 | sub32d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) | 
						
							| 46 | 10 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 47 | 46 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 48 | 21 47 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 50 | 29 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 51 | 16 49 50 | fsumsub | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 52 | 46 27 | relogdivd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  =  ( ( log ‘ 𝑥 )  −  ( log ‘ 𝑛 ) ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ 𝑥 )  −  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 54 | 25 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 55 | 28 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 56 | 22 54 55 | subdid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ 𝑥 )  −  ( log ‘ 𝑛 ) ) )  =  ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 57 | 53 56 | eqtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 58 | 57 | sumeq2dv | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 59 | 20 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 60 | 18 | nncnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 61 | 18 | nnne0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≠  0 ) | 
						
							| 62 | 59 60 61 | divcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 63 | 16 25 62 | fsummulc1 | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 65 | 51 58 64 | 3eqtr4d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 67 | 23 25 | mulcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 68 | 30 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 69 | 31 | rpne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ≠  0 ) | 
						
							| 70 | 67 68 25 69 | divsubdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 71 | 23 25 69 | divcan4d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 73 | 66 70 72 | 3eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) | 
						
							| 75 | 45 74 | eqtr4d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) | 
						
							| 76 | 39 44 75 | 3eqtr3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) | 
						
							| 77 | 76 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) ) | 
						
							| 78 |  | vmalogdivsum2 | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) | 
						
							| 79 | 77 78 | eqeltrdi | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 80 | 26 35 79 | o1dif | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) ) | 
						
							| 81 | 15 80 | mpbid | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 82 | 81 | mptru | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) |