| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 2 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 4 | 3 | nnrpd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑘  ∈  ℝ+ ) | 
						
							| 5 | 4 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 6 | 5 3 | nndivred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ 𝑘 )  /  𝑘 )  ∈  ℝ ) | 
						
							| 7 | 1 6 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  ∈  ℂ ) | 
						
							| 9 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 11 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 12 | 11 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 13 |  | 1red | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 14 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑥 ) | 
						
							| 17 | 13 10 16 | ltled | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 18 | 10 12 17 | rpgecld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 19 | 18 | relogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 20 | 19 | resqcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 21 | 20 | rehalfcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 23 | 19 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 24 | 10 16 | rplogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 25 | 24 | rpne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ≠  0 ) | 
						
							| 26 | 8 22 23 25 | divsubdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 27 | 7 21 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  ∈  ℝ ) | 
						
							| 28 | 27 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  ∈  ℂ ) | 
						
							| 29 | 28 23 25 | divrecd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 30 | 20 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 31 |  | 2cnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  2  ∈  ℂ ) | 
						
							| 32 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 33 | 32 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  2  ≠  0 ) | 
						
							| 34 | 30 31 23 33 25 | divdiv32d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 )  /  ( log ‘ 𝑥 ) )  =  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  ( log ‘ 𝑥 ) )  /  2 ) ) | 
						
							| 35 | 23 | sqvald | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  =  ( ( log ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  ( log ‘ 𝑥 ) )  =  ( ( ( log ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 37 | 23 23 25 | divcan3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( log ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 38 | 36 37 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  ( log ‘ 𝑥 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  ( log ‘ 𝑥 ) )  /  2 )  =  ( ( log ‘ 𝑥 )  /  2 ) ) | 
						
							| 40 | 34 39 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 )  /  ( log ‘ 𝑥 ) )  =  ( ( log ‘ 𝑥 )  /  2 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) | 
						
							| 42 | 26 29 41 | 3eqtr3rd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  =  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 44 | 24 | rprecred | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 45 | 18 | ex | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ+ ) ) | 
						
							| 46 | 45 | ssrdv | ⊢ ( ⊤  →  ( 1 (,) +∞ )  ⊆  ℝ+ ) | 
						
							| 47 |  | eqid | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 48 | 47 | logdivsum | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) ) : ℝ+ ⟶ ℝ  ∧  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ∈  dom   ⇝𝑟   ∧  ( ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ⇝𝑟  1  ∧  1  ∈  ℝ+  ∧  e  ≤  1 )  →  ( abs ‘ ( ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) ) ‘ 1 )  −  1 ) )  ≤  ( ( log ‘ 1 )  /  1 ) ) ) | 
						
							| 49 | 48 | simp2i | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ∈  dom   ⇝𝑟 | 
						
							| 50 |  | rlimdmo1 | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ∈  dom   ⇝𝑟   →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 51 | 49 50 | mp1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 52 | 46 51 | o1res2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 53 |  | divlogrlim | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0 | 
						
							| 54 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 55 | 53 54 | mp1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 56 | 27 44 52 55 | o1mul2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  ( ( ( log ‘ 𝑥 ) ↑ 2 )  /  2 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 57 | 43 56 | eqeltrd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 58 | 8 23 25 | divcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 59 | 23 | halfcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℂ ) | 
						
							| 60 | 58 59 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℂ ) | 
						
							| 61 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 63 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 65 | 64 62 | nndivred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 66 | 18 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 67 | 62 | nnrpd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 68 | 66 67 | rpdivcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 69 | 68 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 70 | 65 69 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 71 | 1 70 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 72 | 71 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 73 | 24 | rpcnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 74 | 72 73 25 | divcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 75 | 73 | halfcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℂ ) | 
						
							| 76 | 74 75 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℂ ) | 
						
							| 77 | 58 74 59 | nnncan2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 78 | 8 72 23 25 | divsubdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 79 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 80 | 64 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 81 | 62 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 82 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 84 | 81 83 | nnmulcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑛  ·  𝑚 )  ∈  ℕ ) | 
						
							| 85 | 80 84 | nndivred | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  ∈  ℝ ) | 
						
							| 86 | 79 85 | fsumrecl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  ∈  ℝ ) | 
						
							| 87 | 86 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  ∈  ℂ ) | 
						
							| 88 | 70 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 89 | 1 87 88 | fsumsub | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 90 | 64 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 91 | 62 | nncnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 92 | 62 | nnne0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≠  0 ) | 
						
							| 93 | 90 91 92 | divcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 94 | 83 | nnrecred | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 95 | 79 94 | fsumrecl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 96 | 95 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 97 | 69 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 98 | 93 96 97 | subdid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 99 | 90 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 100 | 91 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 101 | 83 | nncnd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 102 | 92 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑛  ≠  0 ) | 
						
							| 103 | 83 | nnne0d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ≠  0 ) | 
						
							| 104 | 99 100 101 102 103 | divdiv1d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  𝑚 )  =  ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 105 | 99 100 102 | divcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 106 | 105 101 103 | divrecd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  𝑚 )  =  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 107 | 104 106 | eqtr3d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  =  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 108 | 107 | sumeq2dv | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 109 | 101 103 | reccld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 110 | 79 93 109 | fsummulc2 | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 111 | 108 110 | eqtr4d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  =  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) ) ) | 
						
							| 112 | 111 | oveq1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 113 | 98 112 | eqtr4d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 114 | 113 | sumeq2dv | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 115 |  | vmasum | ⊢ ( 𝑘  ∈  ℕ  →  Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( Λ ‘ 𝑛 )  =  ( log ‘ 𝑘 ) ) | 
						
							| 116 | 3 115 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( Λ ‘ 𝑛 )  =  ( log ‘ 𝑘 ) ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( Λ ‘ 𝑛 )  /  𝑘 )  =  ( ( log ‘ 𝑘 )  /  𝑘 ) ) | 
						
							| 118 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... 𝑘 )  ∈  Fin ) | 
						
							| 119 |  | dvdsssfz1 | ⊢ ( 𝑘  ∈  ℕ  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ( 1 ... 𝑘 ) ) | 
						
							| 120 | 3 119 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ( 1 ... 𝑘 ) ) | 
						
							| 121 | 118 120 | ssfid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ∈  Fin ) | 
						
							| 122 | 3 | nncnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 123 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ℕ | 
						
							| 124 |  | simprr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 125 | 123 124 | sselid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  ℕ ) | 
						
							| 126 | 125 63 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 127 | 126 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 128 | 127 | anassrs | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 129 | 3 | nnne0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑘  ≠  0 ) | 
						
							| 130 | 121 122 128 129 | fsumdivc | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( Λ ‘ 𝑛 )  /  𝑘 )  =  Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑛 )  /  𝑘 ) ) | 
						
							| 131 | 117 130 | eqtr3d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ 𝑘 )  /  𝑘 )  =  Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑛 )  /  𝑘 ) ) | 
						
							| 132 | 131 | sumeq2dv | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑛 )  /  𝑘 ) ) | 
						
							| 133 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( ( Λ ‘ 𝑛 )  /  𝑘 )  =  ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 134 | 2 | ad2antrl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑘  ∈  ℕ ) | 
						
							| 135 | 134 | nncnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑘  ∈  ℂ ) | 
						
							| 136 | 134 | nnne0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑘  ≠  0 ) | 
						
							| 137 | 127 135 136 | divcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑘 )  ∈  ℂ ) | 
						
							| 138 | 133 10 137 | dvdsflsumcom | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( Λ ‘ 𝑛 )  /  𝑘 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 139 | 132 138 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 140 | 139 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 141 | 89 114 140 | 3eqtr4rd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 142 | 141 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 143 | 77 78 142 | 3eqtr2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 144 | 143 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 145 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 146 | 1 65 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 147 | 146 24 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 148 |  | ioossre | ⊢ ( 1 (,) +∞ )  ⊆  ℝ | 
						
							| 149 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 150 |  | o1const | ⊢ ( ( ( 1 (,) +∞ )  ⊆  ℝ  ∧  1  ∈  ℂ )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 151 | 148 149 150 | mp2an | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) | 
						
							| 152 | 151 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 153 | 147 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 154 | 12 | rpcnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℂ ) | 
						
							| 155 | 146 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 156 | 155 23 23 25 | divsubdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 157 | 155 23 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 158 | 157 23 25 | divrecd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 159 | 23 25 | dividd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) )  =  1 ) | 
						
							| 160 | 159 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) | 
						
							| 161 | 156 158 160 | 3eqtr3rd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 162 | 161 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 163 | 146 19 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 164 |  | vmadivsum | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) | 
						
							| 165 | 164 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 166 | 46 165 | o1res2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 167 | 163 44 166 55 | o1mul2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 168 | 162 167 | eqeltrd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) )  ∈  𝑂(1) ) | 
						
							| 169 | 153 154 168 | o1dif | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) ) | 
						
							| 170 | 152 169 | mpbird | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 171 | 147 170 | o1lo1d | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  ≤𝑂(1) ) | 
						
							| 172 | 95 69 | resubcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 173 | 65 172 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 174 | 1 173 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 175 | 174 24 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 176 |  | 1red | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 177 |  | vmage0 | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 178 | 62 177 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 179 | 64 67 178 | divge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 180 | 68 | rpred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 181 | 91 | mullidd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  =  𝑛 ) | 
						
							| 182 |  | fznnfl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 183 | 10 182 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 184 | 183 | simplbda | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≤  𝑥 ) | 
						
							| 185 | 181 184 | eqbrtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  ≤  𝑥 ) | 
						
							| 186 | 10 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 187 | 176 186 67 | lemuldivd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 1  ·  𝑛 )  ≤  𝑥  ↔  1  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 188 | 185 187 | mpbid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 189 |  | harmonicubnd | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  1  ≤  ( 𝑥  /  𝑛 ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  1 ) ) | 
						
							| 190 | 180 188 189 | syl2anc | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  1 ) ) | 
						
							| 191 | 95 69 176 | lesubadd2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ≤  1  ↔  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  1 ) ) ) | 
						
							| 192 | 190 191 | mpbird | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ≤  1 ) | 
						
							| 193 | 172 176 65 179 192 | lemul2ad | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  1 ) ) | 
						
							| 194 | 93 | mulridd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  1 )  =  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 195 | 193 194 | breqtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 196 | 1 173 65 195 | fsumle | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 197 | 174 146 24 196 | lediv1dd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 198 | 197 | adantrr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 1 (,) +∞ )  ∧  1  ≤  𝑥 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 199 | 145 171 147 175 198 | lo1le | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ≤𝑂(1) ) | 
						
							| 200 |  | 0red | ⊢ ( ⊤  →  0  ∈  ℝ ) | 
						
							| 201 |  | harmoniclbnd | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ+  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) ) | 
						
							| 202 | 68 201 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) ) | 
						
							| 203 | 95 69 | subge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 0  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ↔  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) ) ) | 
						
							| 204 | 202 203 | mpbird | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 205 | 65 172 179 204 | mulge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 206 | 1 173 205 | fsumge0 | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 207 | 174 24 206 | divge0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 208 | 175 200 207 | o1lo12 | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 209 | 199 208 | mpbird | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 210 | 144 209 | eqeltrd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 211 | 60 76 210 | o1dif | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑘 )  /  𝑘 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) ) | 
						
							| 212 | 57 211 | mpbid | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 213 | 212 | mptru | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) |