| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 2 |  | elfznn |  |-  ( k e. ( 1 ... ( |_ ` x ) ) -> k e. NN ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. NN ) | 
						
							| 4 | 3 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. RR+ ) | 
						
							| 5 | 4 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` k ) e. RR ) | 
						
							| 6 | 5 3 | nndivred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` k ) / k ) e. RR ) | 
						
							| 7 | 1 6 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) e. CC ) | 
						
							| 9 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 11 |  | 1rp |  |-  1 e. RR+ | 
						
							| 12 | 11 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 13 |  | 1red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 14 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 17 | 13 10 16 | ltled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 18 | 10 12 17 | rpgecld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 19 | 18 | relogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 20 | 19 | resqcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) ^ 2 ) e. RR ) | 
						
							| 21 | 20 | rehalfcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) ^ 2 ) / 2 ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) ^ 2 ) / 2 ) e. CC ) | 
						
							| 23 | 19 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 24 | 10 16 | rplogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 25 | 24 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 26 | 8 22 23 25 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) / ( log ` x ) ) = ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( ( ( log ` x ) ^ 2 ) / 2 ) / ( log ` x ) ) ) ) | 
						
							| 27 | 7 21 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) e. RR ) | 
						
							| 28 | 27 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) e. CC ) | 
						
							| 29 | 28 23 25 | divrecd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) / ( log ` x ) ) = ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 30 | 20 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) ^ 2 ) e. CC ) | 
						
							| 31 |  | 2cnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 32 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 33 | 32 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 =/= 0 ) | 
						
							| 34 | 30 31 23 33 25 | divdiv32d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( log ` x ) ^ 2 ) / 2 ) / ( log ` x ) ) = ( ( ( ( log ` x ) ^ 2 ) / ( log ` x ) ) / 2 ) ) | 
						
							| 35 | 23 | sqvald |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) ^ 2 ) = ( ( log ` x ) x. ( log ` x ) ) ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) ^ 2 ) / ( log ` x ) ) = ( ( ( log ` x ) x. ( log ` x ) ) / ( log ` x ) ) ) | 
						
							| 37 | 23 23 25 | divcan3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) x. ( log ` x ) ) / ( log ` x ) ) = ( log ` x ) ) | 
						
							| 38 | 36 37 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) ^ 2 ) / ( log ` x ) ) = ( log ` x ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( log ` x ) ^ 2 ) / ( log ` x ) ) / 2 ) = ( ( log ` x ) / 2 ) ) | 
						
							| 40 | 34 39 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( log ` x ) ^ 2 ) / 2 ) / ( log ` x ) ) = ( ( log ` x ) / 2 ) ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( ( ( log ` x ) ^ 2 ) / 2 ) / ( log ` x ) ) ) = ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) | 
						
							| 42 | 26 29 41 | 3eqtr3rd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) = ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) x. ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 44 | 24 | rprecred |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 45 | 18 | ex |  |-  ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 46 | 45 | ssrdv |  |-  ( T. -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 47 |  | eqid |  |-  ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) = ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) | 
						
							| 48 | 47 | logdivsum |  |-  ( ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) : RR+ --> RR /\ ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) e. dom ~~>r /\ ( ( ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) ~~>r 1 /\ 1 e. RR+ /\ _e <_ 1 ) -> ( abs ` ( ( ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) ` 1 ) - 1 ) ) <_ ( ( log ` 1 ) / 1 ) ) ) | 
						
							| 49 | 48 | simp2i |  |-  ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) e. dom ~~>r | 
						
							| 50 |  | rlimdmo1 |  |-  ( ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) e. dom ~~>r -> ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) e. O(1) ) | 
						
							| 51 | 49 50 | mp1i |  |-  ( T. -> ( x e. RR+ |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) e. O(1) ) | 
						
							| 52 | 46 51 | o1res2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) ) e. O(1) ) | 
						
							| 53 |  | divlogrlim |  |-  ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 | 
						
							| 54 |  | rlimo1 |  |-  ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 55 | 53 54 | mp1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 56 | 27 44 52 55 | o1mul2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - ( ( ( log ` x ) ^ 2 ) / 2 ) ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 57 | 43 56 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) | 
						
							| 58 | 8 23 25 | divcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) e. CC ) | 
						
							| 59 | 23 | halfcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) | 
						
							| 60 | 58 59 | subcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. CC ) | 
						
							| 61 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 63 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 65 | 64 62 | nndivred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 66 | 18 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 67 | 62 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 68 | 66 67 | rpdivcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 69 | 68 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 70 | 65 69 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 71 | 1 70 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 72 | 71 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 73 | 24 | rpcnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 74 | 72 73 25 | divcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) e. CC ) | 
						
							| 75 | 73 | halfcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) | 
						
							| 76 | 74 75 | subcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. CC ) | 
						
							| 77 | 58 74 59 | nnncan2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) | 
						
							| 78 | 8 72 23 25 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) = ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) | 
						
							| 79 |  | fzfid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 80 | 64 | adantr |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 81 | 62 | adantr |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. NN ) | 
						
							| 82 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) | 
						
							| 84 | 81 83 | nnmulcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) e. NN ) | 
						
							| 85 | 80 84 | nndivred |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` n ) / ( n x. m ) ) e. RR ) | 
						
							| 86 | 79 85 | fsumrecl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) e. RR ) | 
						
							| 87 | 86 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) e. CC ) | 
						
							| 88 | 70 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 89 | 1 87 88 | fsumsub |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 90 | 64 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 91 | 62 | nncnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 92 | 62 | nnne0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 93 | 90 91 92 | divcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 94 | 83 | nnrecred |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. RR ) | 
						
							| 95 | 79 94 | fsumrecl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. RR ) | 
						
							| 96 | 95 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. CC ) | 
						
							| 97 | 69 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) | 
						
							| 98 | 93 96 97 | subdid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 99 | 90 | adantr |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 100 | 91 | adantr |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. CC ) | 
						
							| 101 | 83 | nncnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. CC ) | 
						
							| 102 | 92 | adantr |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n =/= 0 ) | 
						
							| 103 | 83 | nnne0d |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m =/= 0 ) | 
						
							| 104 | 99 100 101 102 103 | divdiv1d |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` n ) / n ) / m ) = ( ( Lam ` n ) / ( n x. m ) ) ) | 
						
							| 105 | 99 100 102 | divcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 106 | 105 101 103 | divrecd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` n ) / n ) / m ) = ( ( ( Lam ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 107 | 104 106 | eqtr3d |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` n ) / ( n x. m ) ) = ( ( ( Lam ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 108 | 107 | sumeq2dv |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 109 | 101 103 | reccld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. CC ) | 
						
							| 110 | 79 93 109 | fsummulc2 |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 111 | 108 110 | eqtr4d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) = ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) ) | 
						
							| 112 | 111 | oveq1d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 113 | 98 112 | eqtr4d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 114 | 113 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 115 |  | vmasum |  |-  ( k e. NN -> sum_ n e. { y e. NN | y || k } ( Lam ` n ) = ( log ` k ) ) | 
						
							| 116 | 3 115 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> sum_ n e. { y e. NN | y || k } ( Lam ` n ) = ( log ` k ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. { y e. NN | y || k } ( Lam ` n ) / k ) = ( ( log ` k ) / k ) ) | 
						
							| 118 |  | fzfid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... k ) e. Fin ) | 
						
							| 119 |  | dvdsssfz1 |  |-  ( k e. NN -> { y e. NN | y || k } C_ ( 1 ... k ) ) | 
						
							| 120 | 3 119 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> { y e. NN | y || k } C_ ( 1 ... k ) ) | 
						
							| 121 | 118 120 | ssfid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> { y e. NN | y || k } e. Fin ) | 
						
							| 122 | 3 | nncnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. CC ) | 
						
							| 123 |  | ssrab2 |  |-  { y e. NN | y || k } C_ NN | 
						
							| 124 |  | simprr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. { y e. NN | y || k } ) | 
						
							| 125 | 123 124 | sselid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. NN ) | 
						
							| 126 | 125 63 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 127 | 126 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 128 | 127 | anassrs |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) /\ n e. { y e. NN | y || k } ) -> ( Lam ` n ) e. CC ) | 
						
							| 129 | 3 | nnne0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k =/= 0 ) | 
						
							| 130 | 121 122 128 129 | fsumdivc |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. { y e. NN | y || k } ( Lam ` n ) / k ) = sum_ n e. { y e. NN | y || k } ( ( Lam ` n ) / k ) ) | 
						
							| 131 | 117 130 | eqtr3d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` k ) / k ) = sum_ n e. { y e. NN | y || k } ( ( Lam ` n ) / k ) ) | 
						
							| 132 | 131 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) = sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( Lam ` n ) / k ) ) | 
						
							| 133 |  | oveq2 |  |-  ( k = ( n x. m ) -> ( ( Lam ` n ) / k ) = ( ( Lam ` n ) / ( n x. m ) ) ) | 
						
							| 134 | 2 | ad2antrl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> k e. NN ) | 
						
							| 135 | 134 | nncnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> k e. CC ) | 
						
							| 136 | 134 | nnne0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> k =/= 0 ) | 
						
							| 137 | 127 135 136 | divcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( ( Lam ` n ) / k ) e. CC ) | 
						
							| 138 | 133 10 137 | dvdsflsumcom |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( Lam ` n ) / k ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) ) | 
						
							| 139 | 132 138 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) ) | 
						
							| 140 | 139 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) / ( n x. m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 141 | 89 114 140 | 3eqtr4rd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) | 
						
							| 142 | 141 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) | 
						
							| 143 | 77 78 142 | 3eqtr2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) | 
						
							| 144 | 143 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) ) | 
						
							| 145 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 146 | 1 65 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 147 | 146 24 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) e. RR ) | 
						
							| 148 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 149 |  | ax-1cn |  |-  1 e. CC | 
						
							| 150 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) | 
						
							| 151 | 148 149 150 | mp2an |  |-  ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) | 
						
							| 152 | 151 | a1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) | 
						
							| 153 | 147 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) e. CC ) | 
						
							| 154 | 12 | rpcnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) | 
						
							| 155 | 146 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 156 | 155 23 23 25 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - ( ( log ` x ) / ( log ` x ) ) ) ) | 
						
							| 157 | 155 23 | subcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) | 
						
							| 158 | 157 23 25 | divrecd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 159 | 23 25 | dividd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) | 
						
							| 160 | 159 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - ( ( log ` x ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) | 
						
							| 161 | 156 158 160 | 3eqtr3rd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 162 | 161 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 163 | 146 19 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. RR ) | 
						
							| 164 |  | vmadivsum |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) | 
						
							| 165 | 164 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 166 | 46 165 | o1res2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 167 | 163 44 166 55 | o1mul2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 168 | 162 167 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) e. O(1) ) | 
						
							| 169 | 153 154 168 | o1dif |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) ) | 
						
							| 170 | 152 169 | mpbird |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. O(1) ) | 
						
							| 171 | 147 170 | o1lo1d |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. <_O(1) ) | 
						
							| 172 | 95 69 | resubcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 173 | 65 172 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 174 | 1 173 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 175 | 174 24 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) e. RR ) | 
						
							| 176 |  | 1red |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 177 |  | vmage0 |  |-  ( n e. NN -> 0 <_ ( Lam ` n ) ) | 
						
							| 178 | 62 177 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) | 
						
							| 179 | 64 67 178 | divge0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) | 
						
							| 180 | 68 | rpred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 181 | 91 | mullidd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) | 
						
							| 182 |  | fznnfl |  |-  ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 183 | 10 182 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 184 | 183 | simplbda |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) | 
						
							| 185 | 181 184 | eqbrtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) | 
						
							| 186 | 10 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 187 | 176 186 67 | lemuldivd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) | 
						
							| 188 | 185 187 | mpbid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) | 
						
							| 189 |  | harmonicubnd |  |-  ( ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) <_ ( ( log ` ( x / n ) ) + 1 ) ) | 
						
							| 190 | 180 188 189 | syl2anc |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) <_ ( ( log ` ( x / n ) ) + 1 ) ) | 
						
							| 191 | 95 69 176 | lesubadd2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) <_ 1 <-> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) <_ ( ( log ` ( x / n ) ) + 1 ) ) ) | 
						
							| 192 | 190 191 | mpbird |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) <_ 1 ) | 
						
							| 193 | 172 176 65 179 192 | lemul2ad |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) <_ ( ( ( Lam ` n ) / n ) x. 1 ) ) | 
						
							| 194 | 93 | mulridd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. 1 ) = ( ( Lam ` n ) / n ) ) | 
						
							| 195 | 193 194 | breqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) <_ ( ( Lam ` n ) / n ) ) | 
						
							| 196 | 1 173 65 195 | fsumle |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) | 
						
							| 197 | 174 146 24 196 | lediv1dd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) | 
						
							| 198 | 197 | adantrr |  |-  ( ( T. /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) | 
						
							| 199 | 145 171 147 175 198 | lo1le |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) e. <_O(1) ) | 
						
							| 200 |  | 0red |  |-  ( T. -> 0 e. RR ) | 
						
							| 201 |  | harmoniclbnd |  |-  ( ( x / n ) e. RR+ -> ( log ` ( x / n ) ) <_ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) | 
						
							| 202 | 68 201 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) <_ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) | 
						
							| 203 | 95 69 | subge0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 0 <_ ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) <-> ( log ` ( x / n ) ) <_ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) ) | 
						
							| 204 | 202 203 | mpbird |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) | 
						
							| 205 | 65 172 179 204 | mulge0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) | 
						
							| 206 | 1 173 205 | fsumge0 |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) | 
						
							| 207 | 174 24 206 | divge0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) | 
						
							| 208 | 175 200 207 | o1lo12 |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) e. <_O(1) ) ) | 
						
							| 209 | 199 208 | mpbird |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) e. O(1) ) | 
						
							| 210 | 144 209 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) | 
						
							| 211 | 60 76 210 | o1dif |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( log ` k ) / k ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) ) | 
						
							| 212 | 57 211 | mpbid |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) | 
						
							| 213 | 212 | mptru |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |