| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 |  |-  F = ( y e. RR+ |-> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) | 
						
							| 2 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 3 | 2 | eqcomi |  |-  RR+ = ( 0 (,) +oo ) | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 6 |  | ere |  |-  _e e. RR | 
						
							| 7 | 6 | a1i |  |-  ( T. -> _e e. RR ) | 
						
							| 8 |  | 0re |  |-  0 e. RR | 
						
							| 9 |  | epos |  |-  0 < _e | 
						
							| 10 | 8 6 9 | ltleii |  |-  0 <_ _e | 
						
							| 11 | 10 | a1i |  |-  ( T. -> 0 <_ _e ) | 
						
							| 12 |  | 1re |  |-  1 e. RR | 
						
							| 13 |  | addge02 |  |-  ( ( 1 e. RR /\ _e e. RR ) -> ( 0 <_ _e <-> 1 <_ ( _e + 1 ) ) ) | 
						
							| 14 | 12 6 13 | mp2an |  |-  ( 0 <_ _e <-> 1 <_ ( _e + 1 ) ) | 
						
							| 15 | 11 14 | sylib |  |-  ( T. -> 1 <_ ( _e + 1 ) ) | 
						
							| 16 | 8 | a1i |  |-  ( T. -> 0 e. RR ) | 
						
							| 17 |  | relogcl |  |-  ( y e. RR+ -> ( log ` y ) e. RR ) | 
						
							| 18 | 17 | adantl |  |-  ( ( T. /\ y e. RR+ ) -> ( log ` y ) e. RR ) | 
						
							| 19 | 18 | resqcld |  |-  ( ( T. /\ y e. RR+ ) -> ( ( log ` y ) ^ 2 ) e. RR ) | 
						
							| 20 | 19 | rehalfcld |  |-  ( ( T. /\ y e. RR+ ) -> ( ( ( log ` y ) ^ 2 ) / 2 ) e. RR ) | 
						
							| 21 |  | rerpdivcl |  |-  ( ( ( log ` y ) e. RR /\ y e. RR+ ) -> ( ( log ` y ) / y ) e. RR ) | 
						
							| 22 | 17 21 | mpancom |  |-  ( y e. RR+ -> ( ( log ` y ) / y ) e. RR ) | 
						
							| 23 | 22 | adantl |  |-  ( ( T. /\ y e. RR+ ) -> ( ( log ` y ) / y ) e. RR ) | 
						
							| 24 |  | nnrp |  |-  ( y e. NN -> y e. RR+ ) | 
						
							| 25 | 24 23 | sylan2 |  |-  ( ( T. /\ y e. NN ) -> ( ( log ` y ) / y ) e. RR ) | 
						
							| 26 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 27 | 26 | a1i |  |-  ( T. -> RR e. { RR , CC } ) | 
						
							| 28 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 29 | 28 | a1i |  |-  ( T. -> CC e. { RR , CC } ) | 
						
							| 30 | 18 | recnd |  |-  ( ( T. /\ y e. RR+ ) -> ( log ` y ) e. CC ) | 
						
							| 31 |  | ovexd |  |-  ( ( T. /\ y e. RR+ ) -> ( 1 / y ) e. _V ) | 
						
							| 32 |  | sqcl |  |-  ( x e. CC -> ( x ^ 2 ) e. CC ) | 
						
							| 33 | 32 | adantl |  |-  ( ( T. /\ x e. CC ) -> ( x ^ 2 ) e. CC ) | 
						
							| 34 | 33 | halfcld |  |-  ( ( T. /\ x e. CC ) -> ( ( x ^ 2 ) / 2 ) e. CC ) | 
						
							| 35 |  | simpr |  |-  ( ( T. /\ x e. CC ) -> x e. CC ) | 
						
							| 36 |  | relogf1o |  |-  ( log |` RR+ ) : RR+ -1-1-onto-> RR | 
						
							| 37 |  | f1of |  |-  ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) | 
						
							| 38 | 36 37 | mp1i |  |-  ( T. -> ( log |` RR+ ) : RR+ --> RR ) | 
						
							| 39 | 38 | feqmptd |  |-  ( T. -> ( log |` RR+ ) = ( y e. RR+ |-> ( ( log |` RR+ ) ` y ) ) ) | 
						
							| 40 |  | fvres |  |-  ( y e. RR+ -> ( ( log |` RR+ ) ` y ) = ( log ` y ) ) | 
						
							| 41 | 40 | mpteq2ia |  |-  ( y e. RR+ |-> ( ( log |` RR+ ) ` y ) ) = ( y e. RR+ |-> ( log ` y ) ) | 
						
							| 42 | 39 41 | eqtrdi |  |-  ( T. -> ( log |` RR+ ) = ( y e. RR+ |-> ( log ` y ) ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( T. -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( y e. RR+ |-> ( log ` y ) ) ) ) | 
						
							| 44 |  | dvrelog |  |-  ( RR _D ( log |` RR+ ) ) = ( y e. RR+ |-> ( 1 / y ) ) | 
						
							| 45 | 43 44 | eqtr3di |  |-  ( T. -> ( RR _D ( y e. RR+ |-> ( log ` y ) ) ) = ( y e. RR+ |-> ( 1 / y ) ) ) | 
						
							| 46 |  | ovexd |  |-  ( ( T. /\ x e. CC ) -> ( 2 x. x ) e. _V ) | 
						
							| 47 |  | 2nn |  |-  2 e. NN | 
						
							| 48 |  | dvexp |  |-  ( 2 e. NN -> ( CC _D ( x e. CC |-> ( x ^ 2 ) ) ) = ( x e. CC |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) ) | 
						
							| 49 | 47 48 | mp1i |  |-  ( T. -> ( CC _D ( x e. CC |-> ( x ^ 2 ) ) ) = ( x e. CC |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) ) | 
						
							| 50 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 51 | 50 | oveq2i |  |-  ( x ^ ( 2 - 1 ) ) = ( x ^ 1 ) | 
						
							| 52 |  | exp1 |  |-  ( x e. CC -> ( x ^ 1 ) = x ) | 
						
							| 53 | 52 | adantl |  |-  ( ( T. /\ x e. CC ) -> ( x ^ 1 ) = x ) | 
						
							| 54 | 51 53 | eqtrid |  |-  ( ( T. /\ x e. CC ) -> ( x ^ ( 2 - 1 ) ) = x ) | 
						
							| 55 | 54 | oveq2d |  |-  ( ( T. /\ x e. CC ) -> ( 2 x. ( x ^ ( 2 - 1 ) ) ) = ( 2 x. x ) ) | 
						
							| 56 | 55 | mpteq2dva |  |-  ( T. -> ( x e. CC |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) = ( x e. CC |-> ( 2 x. x ) ) ) | 
						
							| 57 | 49 56 | eqtrd |  |-  ( T. -> ( CC _D ( x e. CC |-> ( x ^ 2 ) ) ) = ( x e. CC |-> ( 2 x. x ) ) ) | 
						
							| 58 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 59 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 60 | 59 | a1i |  |-  ( T. -> 2 =/= 0 ) | 
						
							| 61 | 29 33 46 57 58 60 | dvmptdivc |  |-  ( T. -> ( CC _D ( x e. CC |-> ( ( x ^ 2 ) / 2 ) ) ) = ( x e. CC |-> ( ( 2 x. x ) / 2 ) ) ) | 
						
							| 62 |  | 2cn |  |-  2 e. CC | 
						
							| 63 |  | divcan3 |  |-  ( ( x e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. x ) / 2 ) = x ) | 
						
							| 64 | 62 59 63 | mp3an23 |  |-  ( x e. CC -> ( ( 2 x. x ) / 2 ) = x ) | 
						
							| 65 | 64 | adantl |  |-  ( ( T. /\ x e. CC ) -> ( ( 2 x. x ) / 2 ) = x ) | 
						
							| 66 | 65 | mpteq2dva |  |-  ( T. -> ( x e. CC |-> ( ( 2 x. x ) / 2 ) ) = ( x e. CC |-> x ) ) | 
						
							| 67 | 61 66 | eqtrd |  |-  ( T. -> ( CC _D ( x e. CC |-> ( ( x ^ 2 ) / 2 ) ) ) = ( x e. CC |-> x ) ) | 
						
							| 68 |  | oveq1 |  |-  ( x = ( log ` y ) -> ( x ^ 2 ) = ( ( log ` y ) ^ 2 ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( x = ( log ` y ) -> ( ( x ^ 2 ) / 2 ) = ( ( ( log ` y ) ^ 2 ) / 2 ) ) | 
						
							| 70 |  | id |  |-  ( x = ( log ` y ) -> x = ( log ` y ) ) | 
						
							| 71 | 27 29 30 31 34 35 45 67 69 70 | dvmptco |  |-  ( T. -> ( RR _D ( y e. RR+ |-> ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) = ( y e. RR+ |-> ( ( log ` y ) x. ( 1 / y ) ) ) ) | 
						
							| 72 |  | rpcn |  |-  ( y e. RR+ -> y e. CC ) | 
						
							| 73 | 72 | adantl |  |-  ( ( T. /\ y e. RR+ ) -> y e. CC ) | 
						
							| 74 |  | rpne0 |  |-  ( y e. RR+ -> y =/= 0 ) | 
						
							| 75 | 74 | adantl |  |-  ( ( T. /\ y e. RR+ ) -> y =/= 0 ) | 
						
							| 76 | 30 73 75 | divrecd |  |-  ( ( T. /\ y e. RR+ ) -> ( ( log ` y ) / y ) = ( ( log ` y ) x. ( 1 / y ) ) ) | 
						
							| 77 | 76 | mpteq2dva |  |-  ( T. -> ( y e. RR+ |-> ( ( log ` y ) / y ) ) = ( y e. RR+ |-> ( ( log ` y ) x. ( 1 / y ) ) ) ) | 
						
							| 78 | 71 77 | eqtr4d |  |-  ( T. -> ( RR _D ( y e. RR+ |-> ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) = ( y e. RR+ |-> ( ( log ` y ) / y ) ) ) | 
						
							| 79 |  | fveq2 |  |-  ( y = i -> ( log ` y ) = ( log ` i ) ) | 
						
							| 80 |  | id |  |-  ( y = i -> y = i ) | 
						
							| 81 | 79 80 | oveq12d |  |-  ( y = i -> ( ( log ` y ) / y ) = ( ( log ` i ) / i ) ) | 
						
							| 82 |  | simp3r |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> y <_ i ) | 
						
							| 83 |  | simp2l |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> y e. RR+ ) | 
						
							| 84 | 83 | rpred |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> y e. RR ) | 
						
							| 85 |  | simp3l |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> _e <_ y ) | 
						
							| 86 |  | simp2r |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> i e. RR+ ) | 
						
							| 87 | 86 | rpred |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> i e. RR ) | 
						
							| 88 | 6 | a1i |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> _e e. RR ) | 
						
							| 89 | 88 84 87 85 82 | letrd |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> _e <_ i ) | 
						
							| 90 |  | logdivle |  |-  ( ( ( y e. RR /\ _e <_ y ) /\ ( i e. RR /\ _e <_ i ) ) -> ( y <_ i <-> ( ( log ` i ) / i ) <_ ( ( log ` y ) / y ) ) ) | 
						
							| 91 | 84 85 87 89 90 | syl22anc |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> ( y <_ i <-> ( ( log ` i ) / i ) <_ ( ( log ` y ) / y ) ) ) | 
						
							| 92 | 82 91 | mpbid |  |-  ( ( T. /\ ( y e. RR+ /\ i e. RR+ ) /\ ( _e <_ y /\ y <_ i ) ) -> ( ( log ` i ) / i ) <_ ( ( log ` y ) / y ) ) | 
						
							| 93 | 72 | cxp1d |  |-  ( y e. RR+ -> ( y ^c 1 ) = y ) | 
						
							| 94 | 93 | oveq2d |  |-  ( y e. RR+ -> ( ( log ` y ) / ( y ^c 1 ) ) = ( ( log ` y ) / y ) ) | 
						
							| 95 | 94 | mpteq2ia |  |-  ( y e. RR+ |-> ( ( log ` y ) / ( y ^c 1 ) ) ) = ( y e. RR+ |-> ( ( log ` y ) / y ) ) | 
						
							| 96 |  | 1rp |  |-  1 e. RR+ | 
						
							| 97 |  | cxploglim |  |-  ( 1 e. RR+ -> ( y e. RR+ |-> ( ( log ` y ) / ( y ^c 1 ) ) ) ~~>r 0 ) | 
						
							| 98 | 96 97 | mp1i |  |-  ( T. -> ( y e. RR+ |-> ( ( log ` y ) / ( y ^c 1 ) ) ) ~~>r 0 ) | 
						
							| 99 | 95 98 | eqbrtrrid |  |-  ( T. -> ( y e. RR+ |-> ( ( log ` y ) / y ) ) ~~>r 0 ) | 
						
							| 100 |  | fveq2 |  |-  ( y = A -> ( log ` y ) = ( log ` A ) ) | 
						
							| 101 |  | id |  |-  ( y = A -> y = A ) | 
						
							| 102 | 100 101 | oveq12d |  |-  ( y = A -> ( ( log ` y ) / y ) = ( ( log ` A ) / A ) ) | 
						
							| 103 | 3 4 5 7 15 16 20 23 25 78 81 92 1 99 102 | dvfsumrlim3 |  |-  ( T. -> ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r L /\ A e. RR+ /\ _e <_ A ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) ) ) | 
						
							| 104 | 103 | mptru |  |-  ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r L /\ A e. RR+ /\ _e <_ A ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) ) |