| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 |  |-  F = ( y e. RR+ |-> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) | 
						
							| 2 |  | mulog2sumlem.1 |  |-  ( ph -> F ~~>r L ) | 
						
							| 3 |  | mulog2sumlem1.2 |  |-  ( ph -> A e. RR+ ) | 
						
							| 4 |  | mulog2sumlem1.3 |  |-  ( ph -> _e <_ A ) | 
						
							| 5 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) | 
						
							| 6 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) | 
						
							| 7 | 6 | nnrpd |  |-  ( m e. ( 1 ... ( |_ ` A ) ) -> m e. RR+ ) | 
						
							| 8 |  | rpdivcl |  |-  ( ( A e. RR+ /\ m e. RR+ ) -> ( A / m ) e. RR+ ) | 
						
							| 9 | 3 7 8 | syl2an |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( A / m ) e. RR+ ) | 
						
							| 10 | 9 | relogcld |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / m ) ) e. RR ) | 
						
							| 11 | 6 | adantl |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) | 
						
							| 12 | 10 11 | nndivred |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` ( A / m ) ) / m ) e. RR ) | 
						
							| 13 | 5 12 | fsumrecl |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) e. RR ) | 
						
							| 14 | 3 | relogcld |  |-  ( ph -> ( log ` A ) e. RR ) | 
						
							| 15 | 14 | resqcld |  |-  ( ph -> ( ( log ` A ) ^ 2 ) e. RR ) | 
						
							| 16 | 15 | rehalfcld |  |-  ( ph -> ( ( ( log ` A ) ^ 2 ) / 2 ) e. RR ) | 
						
							| 17 |  | emre |  |-  gamma e. RR | 
						
							| 18 |  | remulcl |  |-  ( ( gamma e. RR /\ ( log ` A ) e. RR ) -> ( gamma x. ( log ` A ) ) e. RR ) | 
						
							| 19 | 17 14 18 | sylancr |  |-  ( ph -> ( gamma x. ( log ` A ) ) e. RR ) | 
						
							| 20 |  | rpsup |  |-  sup ( RR+ , RR* , < ) = +oo | 
						
							| 21 | 20 | a1i |  |-  ( ph -> sup ( RR+ , RR* , < ) = +oo ) | 
						
							| 22 | 1 | logdivsum |  |-  ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r L /\ A e. RR+ /\ _e <_ A ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) ) | 
						
							| 23 | 22 | simp1i |  |-  F : RR+ --> RR | 
						
							| 24 | 23 | a1i |  |-  ( ph -> F : RR+ --> RR ) | 
						
							| 25 | 24 | feqmptd |  |-  ( ph -> F = ( x e. RR+ |-> ( F ` x ) ) ) | 
						
							| 26 | 25 2 | eqbrtrrd |  |-  ( ph -> ( x e. RR+ |-> ( F ` x ) ) ~~>r L ) | 
						
							| 27 | 23 | ffvelcdmi |  |-  ( x e. RR+ -> ( F ` x ) e. RR ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( F ` x ) e. RR ) | 
						
							| 29 | 21 26 28 | rlimrecl |  |-  ( ph -> L e. RR ) | 
						
							| 30 | 19 29 | resubcld |  |-  ( ph -> ( ( gamma x. ( log ` A ) ) - L ) e. RR ) | 
						
							| 31 | 16 30 | readdcld |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) e. RR ) | 
						
							| 32 | 13 31 | resubcld |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) e. CC ) | 
						
							| 34 | 33 | abscld |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) e. RR ) | 
						
							| 35 |  | rerpdivcl |  |-  ( ( ( log ` A ) e. RR /\ m e. RR+ ) -> ( ( log ` A ) / m ) e. RR ) | 
						
							| 36 | 14 7 35 | syl2an |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` A ) / m ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` A ) / m ) e. CC ) | 
						
							| 38 | 5 37 | fsumcl |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) e. CC ) | 
						
							| 39 | 14 | recnd |  |-  ( ph -> ( log ` A ) e. CC ) | 
						
							| 40 |  | readdcl |  |-  ( ( ( log ` A ) e. RR /\ gamma e. RR ) -> ( ( log ` A ) + gamma ) e. RR ) | 
						
							| 41 | 14 17 40 | sylancl |  |-  ( ph -> ( ( log ` A ) + gamma ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ph -> ( ( log ` A ) + gamma ) e. CC ) | 
						
							| 43 | 39 42 | mulcld |  |-  ( ph -> ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) e. CC ) | 
						
							| 44 | 38 43 | subcld |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) e. CC ) | 
						
							| 45 | 44 | abscld |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) e. RR ) | 
						
							| 46 | 11 | nnrpd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. RR+ ) | 
						
							| 47 | 46 | relogcld |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 48 | 47 11 | nndivred |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` m ) / m ) e. RR ) | 
						
							| 49 | 48 | recnd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` m ) / m ) e. CC ) | 
						
							| 50 | 5 49 | fsumcl |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) e. CC ) | 
						
							| 51 | 16 | recnd |  |-  ( ph -> ( ( ( log ` A ) ^ 2 ) / 2 ) e. CC ) | 
						
							| 52 | 29 | recnd |  |-  ( ph -> L e. CC ) | 
						
							| 53 | 51 52 | addcld |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) e. CC ) | 
						
							| 54 | 50 53 | subcld |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) e. CC ) | 
						
							| 55 | 54 | abscld |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) e. RR ) | 
						
							| 56 | 45 55 | readdcld |  |-  ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) e. RR ) | 
						
							| 57 |  | 2re |  |-  2 e. RR | 
						
							| 58 | 14 3 | rerpdivcld |  |-  ( ph -> ( ( log ` A ) / A ) e. RR ) | 
						
							| 59 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( log ` A ) / A ) e. RR ) -> ( 2 x. ( ( log ` A ) / A ) ) e. RR ) | 
						
							| 60 | 57 58 59 | sylancr |  |-  ( ph -> ( 2 x. ( ( log ` A ) / A ) ) e. RR ) | 
						
							| 61 |  | relogdiv |  |-  ( ( A e. RR+ /\ m e. RR+ ) -> ( log ` ( A / m ) ) = ( ( log ` A ) - ( log ` m ) ) ) | 
						
							| 62 | 3 7 61 | syl2an |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / m ) ) = ( ( log ` A ) - ( log ` m ) ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` ( A / m ) ) / m ) = ( ( ( log ` A ) - ( log ` m ) ) / m ) ) | 
						
							| 64 | 39 | adantr |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` A ) e. CC ) | 
						
							| 65 | 47 | recnd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` m ) e. CC ) | 
						
							| 66 | 46 | rpcnne0d |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( m e. CC /\ m =/= 0 ) ) | 
						
							| 67 |  | divsubdir |  |-  ( ( ( log ` A ) e. CC /\ ( log ` m ) e. CC /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( ( log ` A ) - ( log ` m ) ) / m ) = ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) | 
						
							| 68 | 64 65 66 67 | syl3anc |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( log ` A ) - ( log ` m ) ) / m ) = ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) | 
						
							| 69 | 63 68 | eqtrd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` ( A / m ) ) / m ) = ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) | 
						
							| 70 | 69 | sumeq2dv |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) | 
						
							| 71 | 5 37 49 | fsumsub |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) ) | 
						
							| 72 | 70 71 | eqtrd |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) ) | 
						
							| 73 |  | remulcl |  |-  ( ( ( log ` A ) e. RR /\ gamma e. RR ) -> ( ( log ` A ) x. gamma ) e. RR ) | 
						
							| 74 | 14 17 73 | sylancl |  |-  ( ph -> ( ( log ` A ) x. gamma ) e. RR ) | 
						
							| 75 | 16 74 | readdcld |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) e. RR ) | 
						
							| 76 | 75 | recnd |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) e. CC ) | 
						
							| 77 | 76 51 | pncand |  |-  ( ph -> ( ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) ) | 
						
							| 78 | 17 | recni |  |-  gamma e. CC | 
						
							| 79 | 78 | a1i |  |-  ( ph -> gamma e. CC ) | 
						
							| 80 | 39 39 79 | adddid |  |-  ( ph -> ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) = ( ( ( log ` A ) x. ( log ` A ) ) + ( ( log ` A ) x. gamma ) ) ) | 
						
							| 81 | 15 | recnd |  |-  ( ph -> ( ( log ` A ) ^ 2 ) e. CC ) | 
						
							| 82 | 81 | 2halvesd |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( log ` A ) ^ 2 ) ) | 
						
							| 83 | 39 | sqvald |  |-  ( ph -> ( ( log ` A ) ^ 2 ) = ( ( log ` A ) x. ( log ` A ) ) ) | 
						
							| 84 | 82 83 | eqtrd |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( log ` A ) x. ( log ` A ) ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) + ( ( log ` A ) x. gamma ) ) = ( ( ( log ` A ) x. ( log ` A ) ) + ( ( log ` A ) x. gamma ) ) ) | 
						
							| 86 | 74 | recnd |  |-  ( ph -> ( ( log ` A ) x. gamma ) e. CC ) | 
						
							| 87 | 51 51 86 | add32d |  |-  ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) + ( ( log ` A ) x. gamma ) ) = ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 88 | 80 85 87 | 3eqtr2d |  |-  ( ph -> ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) = ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ph -> ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 90 |  | mulcom |  |-  ( ( gamma e. CC /\ ( log ` A ) e. CC ) -> ( gamma x. ( log ` A ) ) = ( ( log ` A ) x. gamma ) ) | 
						
							| 91 | 78 39 90 | sylancr |  |-  ( ph -> ( gamma x. ( log ` A ) ) = ( ( log ` A ) x. gamma ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) = ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) ) | 
						
							| 93 | 77 89 92 | 3eqtr4rd |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) = ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 94 | 93 | oveq1d |  |-  ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) - L ) = ( ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) ) | 
						
							| 95 | 91 86 | eqeltrd |  |-  ( ph -> ( gamma x. ( log ` A ) ) e. CC ) | 
						
							| 96 | 51 95 52 | addsubassd |  |-  ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) - L ) = ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) | 
						
							| 97 | 43 51 52 | subsub4d |  |-  ( ph -> ( ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) = ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) | 
						
							| 98 | 94 96 97 | 3eqtr3d |  |-  ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) = ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) | 
						
							| 99 | 72 98 | oveq12d |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) - ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) | 
						
							| 100 | 38 50 43 53 | sub4d |  |-  ( ph -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) - ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) | 
						
							| 101 | 99 100 | eqtrd |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) ) | 
						
							| 103 | 44 54 | abs2dif2d |  |-  ( ph -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) <_ ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) ) | 
						
							| 104 | 102 103 | eqbrtrd |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) <_ ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) ) | 
						
							| 105 |  | harmonicbnd4 |  |-  ( A e. RR+ -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) ) | 
						
							| 106 | 3 105 | syl |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) ) | 
						
							| 107 | 11 | nnrecred |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) | 
						
							| 108 | 5 107 | fsumrecl |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) | 
						
							| 109 | 108 41 | resubcld |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) e. RR ) | 
						
							| 110 | 109 | recnd |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) e. CC ) | 
						
							| 111 | 110 | abscld |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) e. RR ) | 
						
							| 112 | 3 | rprecred |  |-  ( ph -> ( 1 / A ) e. RR ) | 
						
							| 113 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 114 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 115 |  | 0lt1 |  |-  0 < 1 | 
						
							| 116 | 115 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 117 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 118 |  | epr |  |-  _e e. RR+ | 
						
							| 119 |  | logleb |  |-  ( ( _e e. RR+ /\ A e. RR+ ) -> ( _e <_ A <-> ( log ` _e ) <_ ( log ` A ) ) ) | 
						
							| 120 | 118 3 119 | sylancr |  |-  ( ph -> ( _e <_ A <-> ( log ` _e ) <_ ( log ` A ) ) ) | 
						
							| 121 | 4 120 | mpbid |  |-  ( ph -> ( log ` _e ) <_ ( log ` A ) ) | 
						
							| 122 | 117 121 | eqbrtrrid |  |-  ( ph -> 1 <_ ( log ` A ) ) | 
						
							| 123 | 113 114 14 116 122 | ltletrd |  |-  ( ph -> 0 < ( log ` A ) ) | 
						
							| 124 |  | lemul2 |  |-  ( ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) e. RR /\ ( 1 / A ) e. RR /\ ( ( log ` A ) e. RR /\ 0 < ( log ` A ) ) ) -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) <-> ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) x. ( 1 / A ) ) ) ) | 
						
							| 125 | 111 112 14 123 124 | syl112anc |  |-  ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) <-> ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) x. ( 1 / A ) ) ) ) | 
						
							| 126 | 106 125 | mpbid |  |-  ( ph -> ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) x. ( 1 / A ) ) ) | 
						
							| 127 | 46 | rpcnd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. CC ) | 
						
							| 128 | 46 | rpne0d |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m =/= 0 ) | 
						
							| 129 | 64 127 128 | divrecd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` A ) / m ) = ( ( log ` A ) x. ( 1 / m ) ) ) | 
						
							| 130 | 129 | sumeq2dv |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) x. ( 1 / m ) ) ) | 
						
							| 131 | 107 | recnd |  |-  ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. CC ) | 
						
							| 132 | 5 39 131 | fsummulc2 |  |-  ( ph -> ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) x. ( 1 / m ) ) ) | 
						
							| 133 | 130 132 | eqtr4d |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) = ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) ) | 
						
							| 134 | 133 | oveq1d |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) = ( ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) | 
						
							| 135 | 5 131 | fsumcl |  |-  ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. CC ) | 
						
							| 136 | 39 135 42 | subdid |  |-  ( ph -> ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) = ( ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) | 
						
							| 137 | 134 136 | eqtr4d |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) = ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) | 
						
							| 138 | 137 | fveq2d |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) = ( abs ` ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) | 
						
							| 139 | 135 42 | subcld |  |-  ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) e. CC ) | 
						
							| 140 | 39 139 | absmuld |  |-  ( ph -> ( abs ` ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) = ( ( abs ` ( log ` A ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) | 
						
							| 141 | 113 14 123 | ltled |  |-  ( ph -> 0 <_ ( log ` A ) ) | 
						
							| 142 | 14 141 | absidd |  |-  ( ph -> ( abs ` ( log ` A ) ) = ( log ` A ) ) | 
						
							| 143 | 142 | oveq1d |  |-  ( ph -> ( ( abs ` ( log ` A ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) = ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) | 
						
							| 144 | 138 140 143 | 3eqtrd |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) = ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) | 
						
							| 145 | 3 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 146 | 3 | rpne0d |  |-  ( ph -> A =/= 0 ) | 
						
							| 147 | 39 145 146 | divrecd |  |-  ( ph -> ( ( log ` A ) / A ) = ( ( log ` A ) x. ( 1 / A ) ) ) | 
						
							| 148 | 126 144 147 | 3brtr4d |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) / A ) ) | 
						
							| 149 |  | fveq2 |  |-  ( i = m -> ( log ` i ) = ( log ` m ) ) | 
						
							| 150 |  | id |  |-  ( i = m -> i = m ) | 
						
							| 151 | 149 150 | oveq12d |  |-  ( i = m -> ( ( log ` i ) / i ) = ( ( log ` m ) / m ) ) | 
						
							| 152 | 151 | cbvsumv |  |-  sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) = sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( log ` m ) / m ) | 
						
							| 153 |  | fveq2 |  |-  ( y = A -> ( |_ ` y ) = ( |_ ` A ) ) | 
						
							| 154 | 153 | oveq2d |  |-  ( y = A -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` A ) ) ) | 
						
							| 155 | 154 | sumeq1d |  |-  ( y = A -> sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( log ` m ) / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) | 
						
							| 156 | 152 155 | eqtrid |  |-  ( y = A -> sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) | 
						
							| 157 |  | fveq2 |  |-  ( y = A -> ( log ` y ) = ( log ` A ) ) | 
						
							| 158 | 157 | oveq1d |  |-  ( y = A -> ( ( log ` y ) ^ 2 ) = ( ( log ` A ) ^ 2 ) ) | 
						
							| 159 | 158 | oveq1d |  |-  ( y = A -> ( ( ( log ` y ) ^ 2 ) / 2 ) = ( ( ( log ` A ) ^ 2 ) / 2 ) ) | 
						
							| 160 | 156 159 | oveq12d |  |-  ( y = A -> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 161 |  | ovex |  |-  ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) e. _V | 
						
							| 162 | 160 1 161 | fvmpt |  |-  ( A e. RR+ -> ( F ` A ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 163 | 3 162 | syl |  |-  ( ph -> ( F ` A ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) | 
						
							| 164 | 163 | oveq1d |  |-  ( ph -> ( ( F ` A ) - L ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) ) | 
						
							| 165 | 50 51 52 | subsub4d |  |-  ( ph -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) | 
						
							| 166 | 164 165 | eqtrd |  |-  ( ph -> ( ( F ` A ) - L ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) | 
						
							| 167 | 166 | fveq2d |  |-  ( ph -> ( abs ` ( ( F ` A ) - L ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) | 
						
							| 168 | 22 | simp3i |  |-  ( ( F ~~>r L /\ A e. RR+ /\ _e <_ A ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) | 
						
							| 169 | 2 3 4 168 | syl3anc |  |-  ( ph -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) | 
						
							| 170 | 167 169 | eqbrtrrd |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) <_ ( ( log ` A ) / A ) ) | 
						
							| 171 | 45 55 58 58 148 170 | le2addd |  |-  ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) <_ ( ( ( log ` A ) / A ) + ( ( log ` A ) / A ) ) ) | 
						
							| 172 | 58 | recnd |  |-  ( ph -> ( ( log ` A ) / A ) e. CC ) | 
						
							| 173 | 172 | 2timesd |  |-  ( ph -> ( 2 x. ( ( log ` A ) / A ) ) = ( ( ( log ` A ) / A ) + ( ( log ` A ) / A ) ) ) | 
						
							| 174 | 171 173 | breqtrrd |  |-  ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) <_ ( 2 x. ( ( log ` A ) / A ) ) ) | 
						
							| 175 | 34 56 60 104 174 | letrd |  |-  ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) <_ ( 2 x. ( ( log ` A ) / A ) ) ) |