| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 |  |-  F = ( y e. RR+ |-> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) | 
						
							| 2 |  | mulog2sumlem.1 |  |-  ( ph -> F ~~>r L ) | 
						
							| 3 |  | mulog2sumlem2.t |  |-  T = ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) | 
						
							| 4 |  | mulog2sumlem2.r |  |-  R = ( ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) + sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 5 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 6 |  | 2re |  |-  2 e. RR | 
						
							| 7 |  | fzfid |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 9 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 10 | 9 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 11 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 12 | 8 10 11 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 13 | 12 | relogcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 14 |  | simplr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 15 | 13 14 | rerpdivcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) / x ) e. RR ) | 
						
							| 16 | 7 15 | fsumrecl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) e. RR ) | 
						
							| 17 |  | remulcl |  |-  ( ( 2 e. RR /\ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) e. RR ) | 
						
							| 18 | 6 16 17 | sylancr |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) e. RR ) | 
						
							| 19 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 20 |  | emre |  |-  gamma e. RR | 
						
							| 21 |  | rlimcl |  |-  ( F ~~>r L -> L e. CC ) | 
						
							| 22 | 2 21 | syl |  |-  ( ph -> L e. CC ) | 
						
							| 23 | 22 | abscld |  |-  ( ph -> ( abs ` L ) e. RR ) | 
						
							| 24 |  | readdcl |  |-  ( ( gamma e. RR /\ ( abs ` L ) e. RR ) -> ( gamma + ( abs ` L ) ) e. RR ) | 
						
							| 25 | 20 23 24 | sylancr |  |-  ( ph -> ( gamma + ( abs ` L ) ) e. RR ) | 
						
							| 26 |  | readdcl |  |-  ( ( ( 1 / 2 ) e. RR /\ ( gamma + ( abs ` L ) ) e. RR ) -> ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) e. RR ) | 
						
							| 27 | 19 25 26 | sylancr |  |-  ( ph -> ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) e. RR ) | 
						
							| 28 |  | fzfid |  |-  ( ph -> ( 1 ... 2 ) e. Fin ) | 
						
							| 29 |  | epr |  |-  _e e. RR+ | 
						
							| 30 |  | elfznn |  |-  ( m e. ( 1 ... 2 ) -> m e. NN ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> m e. NN ) | 
						
							| 32 | 31 | nnrpd |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> m e. RR+ ) | 
						
							| 33 |  | rpdivcl |  |-  ( ( _e e. RR+ /\ m e. RR+ ) -> ( _e / m ) e. RR+ ) | 
						
							| 34 | 29 32 33 | sylancr |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( _e / m ) e. RR+ ) | 
						
							| 35 | 34 | relogcld |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( log ` ( _e / m ) ) e. RR ) | 
						
							| 36 | 35 31 | nndivred |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( ( log ` ( _e / m ) ) / m ) e. RR ) | 
						
							| 37 | 28 36 | fsumrecl |  |-  ( ph -> sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) e. RR ) | 
						
							| 38 | 27 37 | readdcld |  |-  ( ph -> ( ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) + sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) e. RR ) | 
						
							| 39 | 4 38 | eqeltrid |  |-  ( ph -> R e. RR ) | 
						
							| 40 |  | remulcl |  |-  ( ( R e. RR /\ 2 e. RR ) -> ( R x. 2 ) e. RR ) | 
						
							| 41 | 39 6 40 | sylancl |  |-  ( ph -> ( R x. 2 ) e. RR ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> ( R x. 2 ) e. RR ) | 
						
							| 43 | 6 | a1i |  |-  ( ( ph /\ x e. RR+ ) -> 2 e. RR ) | 
						
							| 44 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 45 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 46 |  | o1const |  |-  ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) | 
						
							| 47 | 44 45 46 | sylancr |  |-  ( ph -> ( x e. RR+ |-> 2 ) e. O(1) ) | 
						
							| 48 |  | logfacrlim2 |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) ~~>r 1 | 
						
							| 49 |  | rlimo1 |  |-  ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) ~~>r 1 -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) e. O(1) ) | 
						
							| 50 | 48 49 | mp1i |  |-  ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) e. O(1) ) | 
						
							| 51 | 43 16 47 50 | o1mul2 |  |-  ( ph -> ( x e. RR+ |-> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) ) e. O(1) ) | 
						
							| 52 | 41 | recnd |  |-  ( ph -> ( R x. 2 ) e. CC ) | 
						
							| 53 |  | o1const |  |-  ( ( RR+ C_ RR /\ ( R x. 2 ) e. CC ) -> ( x e. RR+ |-> ( R x. 2 ) ) e. O(1) ) | 
						
							| 54 | 44 52 53 | sylancr |  |-  ( ph -> ( x e. RR+ |-> ( R x. 2 ) ) e. O(1) ) | 
						
							| 55 | 18 42 51 54 | o1add2 |  |-  ( ph -> ( x e. RR+ |-> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) e. O(1) ) | 
						
							| 56 | 18 42 | readdcld |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) e. RR ) | 
						
							| 57 | 9 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 58 |  | mucl |  |-  ( n e. NN -> ( mmu ` n ) e. ZZ ) | 
						
							| 59 | 57 58 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 60 | 59 | zred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 61 | 60 57 | nndivred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 63 | 13 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) | 
						
							| 64 | 63 | sqcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) | 
						
							| 65 | 64 | halfcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) e. CC ) | 
						
							| 66 |  | remulcl |  |-  ( ( gamma e. RR /\ ( log ` ( x / n ) ) e. RR ) -> ( gamma x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 67 | 20 13 66 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( gamma x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 68 | 67 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( gamma x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 69 | 22 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> L e. CC ) | 
						
							| 70 | 68 69 | subcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( gamma x. ( log ` ( x / n ) ) ) - L ) e. CC ) | 
						
							| 71 | 65 70 | addcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) e. CC ) | 
						
							| 72 | 3 71 | eqeltrid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> T e. CC ) | 
						
							| 73 | 62 72 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. T ) e. CC ) | 
						
							| 74 | 7 73 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) e. CC ) | 
						
							| 75 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) | 
						
							| 77 | 76 | recnd |  |-  ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) | 
						
							| 78 | 74 77 | subcld |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) e. CC ) | 
						
							| 79 | 78 | abscld |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) e. RR ) | 
						
							| 80 | 79 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) e. RR ) | 
						
							| 81 | 56 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) e. RR ) | 
						
							| 82 | 56 | recnd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) e. CC ) | 
						
							| 83 | 82 | abscld |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) e. RR ) | 
						
							| 84 | 83 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) e. RR ) | 
						
							| 85 | 59 | zcnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 86 |  | fzfid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 87 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 88 |  | nnrp |  |-  ( m e. NN -> m e. RR+ ) | 
						
							| 89 |  | rpdivcl |  |-  ( ( ( x / n ) e. RR+ /\ m e. RR+ ) -> ( ( x / n ) / m ) e. RR+ ) | 
						
							| 90 | 12 88 89 | syl2an |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( x / n ) / m ) e. RR+ ) | 
						
							| 91 | 90 | relogcld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( log ` ( ( x / n ) / m ) ) e. RR ) | 
						
							| 92 |  | simpr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> m e. NN ) | 
						
							| 93 | 91 92 | nndivred |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) e. RR ) | 
						
							| 94 | 93 | recnd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC ) | 
						
							| 95 | 87 94 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC ) | 
						
							| 96 | 86 95 | fsumcl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC ) | 
						
							| 97 | 72 96 | subcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) e. CC ) | 
						
							| 98 | 57 | nncnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 99 | 57 | nnne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 100 | 85 97 98 99 | div23d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) = ( ( ( mmu ` n ) / n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 101 | 62 72 96 | subdid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) = ( ( ( ( mmu ` n ) / n ) x. T ) - ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 102 | 100 101 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) = ( ( ( ( mmu ` n ) / n ) x. T ) - ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 103 | 102 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. T ) - ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 104 | 62 96 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) e. CC ) | 
						
							| 105 | 7 73 104 | fsumsub |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. T ) - ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 106 | 103 105 | eqtrd |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 107 | 106 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 108 | 86 62 95 | fsummulc2 |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) | 
						
							| 109 | 85 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( mmu ` n ) e. CC ) | 
						
							| 110 | 98 99 | jca |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 112 |  | div23 |  |-  ( ( ( mmu ` n ) e. CC /\ ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) / n ) = ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) | 
						
							| 113 |  | divass |  |-  ( ( ( mmu ` n ) e. CC /\ ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) / n ) = ( ( mmu ` n ) x. ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) ) ) | 
						
							| 114 | 112 113 | eqtr3d |  |-  ( ( ( mmu ` n ) e. CC /\ ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) = ( ( mmu ` n ) x. ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) ) ) | 
						
							| 115 | 109 94 111 114 | syl3anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) = ( ( mmu ` n ) x. ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) ) ) | 
						
							| 116 | 91 | recnd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( log ` ( ( x / n ) / m ) ) e. CC ) | 
						
							| 117 | 92 | nnrpd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> m e. RR+ ) | 
						
							| 118 |  | rpcnne0 |  |-  ( m e. RR+ -> ( m e. CC /\ m =/= 0 ) ) | 
						
							| 119 | 117 118 | syl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( m e. CC /\ m =/= 0 ) ) | 
						
							| 120 |  | divdiv1 |  |-  ( ( ( log ` ( ( x / n ) / m ) ) e. CC /\ ( m e. CC /\ m =/= 0 ) /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) = ( ( log ` ( ( x / n ) / m ) ) / ( m x. n ) ) ) | 
						
							| 121 | 116 119 111 120 | syl3anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) = ( ( log ` ( ( x / n ) / m ) ) / ( m x. n ) ) ) | 
						
							| 122 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 123 | 122 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 125 | 124 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> x e. CC ) | 
						
							| 127 |  | divdiv1 |  |-  ( ( x e. CC /\ ( n e. CC /\ n =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( x / n ) / m ) = ( x / ( n x. m ) ) ) | 
						
							| 128 | 126 111 119 127 | syl3anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( x / n ) / m ) = ( x / ( n x. m ) ) ) | 
						
							| 129 | 128 | fveq2d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( log ` ( ( x / n ) / m ) ) = ( log ` ( x / ( n x. m ) ) ) ) | 
						
							| 130 | 92 | nncnd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> m e. CC ) | 
						
							| 131 | 98 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> n e. CC ) | 
						
							| 132 | 130 131 | mulcomd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( m x. n ) = ( n x. m ) ) | 
						
							| 133 | 129 132 | oveq12d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( log ` ( ( x / n ) / m ) ) / ( m x. n ) ) = ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) | 
						
							| 134 | 121 133 | eqtrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) = ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) | 
						
							| 135 | 134 | oveq2d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( mmu ` n ) x. ( ( ( log ` ( ( x / n ) / m ) ) / m ) / n ) ) = ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 136 | 115 135 | eqtrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) = ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 137 | 87 136 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) = ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 138 | 137 | sumeq2dv |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 139 | 108 138 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 140 | 139 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 141 |  | oveq2 |  |-  ( k = ( n x. m ) -> ( x / k ) = ( x / ( n x. m ) ) ) | 
						
							| 142 | 141 | fveq2d |  |-  ( k = ( n x. m ) -> ( log ` ( x / k ) ) = ( log ` ( x / ( n x. m ) ) ) ) | 
						
							| 143 |  | id |  |-  ( k = ( n x. m ) -> k = ( n x. m ) ) | 
						
							| 144 | 142 143 | oveq12d |  |-  ( k = ( n x. m ) -> ( ( log ` ( x / k ) ) / k ) = ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) | 
						
							| 145 | 144 | oveq2d |  |-  ( k = ( n x. m ) -> ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) = ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 146 | 8 | rpred |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR ) | 
						
							| 147 |  | ssrab2 |  |-  { y e. NN | y || k } C_ NN | 
						
							| 148 |  | simprr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. { y e. NN | y || k } ) | 
						
							| 149 | 147 148 | sselid |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. NN ) | 
						
							| 150 | 149 58 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 151 | 150 | zred |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 152 |  | elfznn |  |-  ( k e. ( 1 ... ( |_ ` x ) ) -> k e. NN ) | 
						
							| 153 | 152 | adantr |  |-  ( ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) -> k e. NN ) | 
						
							| 154 | 153 | nnrpd |  |-  ( ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) -> k e. RR+ ) | 
						
							| 155 |  | rpdivcl |  |-  ( ( x e. RR+ /\ k e. RR+ ) -> ( x / k ) e. RR+ ) | 
						
							| 156 | 8 154 155 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( x / k ) e. RR+ ) | 
						
							| 157 | 156 | relogcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( log ` ( x / k ) ) e. RR ) | 
						
							| 158 | 152 | ad2antrl |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> k e. NN ) | 
						
							| 159 | 157 158 | nndivred |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( ( log ` ( x / k ) ) / k ) e. RR ) | 
						
							| 160 | 151 159 | remulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) e. RR ) | 
						
							| 161 | 160 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) e. CC ) | 
						
							| 162 | 145 146 161 | dvdsflsumcom |  |-  ( ( ph /\ x e. RR+ ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` ( x / ( n x. m ) ) ) / ( n x. m ) ) ) ) | 
						
							| 163 | 140 162 | eqtr4d |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) ) | 
						
							| 164 | 163 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) ) | 
						
							| 165 |  | oveq2 |  |-  ( k = 1 -> ( x / k ) = ( x / 1 ) ) | 
						
							| 166 | 165 | fveq2d |  |-  ( k = 1 -> ( log ` ( x / k ) ) = ( log ` ( x / 1 ) ) ) | 
						
							| 167 |  | id |  |-  ( k = 1 -> k = 1 ) | 
						
							| 168 | 166 167 | oveq12d |  |-  ( k = 1 -> ( ( log ` ( x / k ) ) / k ) = ( ( log ` ( x / 1 ) ) / 1 ) ) | 
						
							| 169 |  | fzfid |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 170 |  | fz1ssnn |  |-  ( 1 ... ( |_ ` x ) ) C_ NN | 
						
							| 171 | 170 | a1i |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` x ) ) C_ NN ) | 
						
							| 172 | 123 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) | 
						
							| 173 |  | simprr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) | 
						
							| 174 |  | flge1nn |  |-  ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 175 | 172 173 174 | syl2anc |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` x ) e. NN ) | 
						
							| 176 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 177 | 175 176 | eleqtrdi |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) | 
						
							| 178 |  | eluzfz1 |  |-  ( ( |_ ` x ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 179 | 177 178 | syl |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 180 | 152 | nnrpd |  |-  ( k e. ( 1 ... ( |_ ` x ) ) -> k e. RR+ ) | 
						
							| 181 | 8 180 155 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( x / k ) e. RR+ ) | 
						
							| 182 | 181 | relogcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / k ) ) e. RR ) | 
						
							| 183 | 170 | a1i |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) C_ NN ) | 
						
							| 184 | 183 | sselda |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. NN ) | 
						
							| 185 | 182 184 | nndivred |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / k ) ) / k ) e. RR ) | 
						
							| 186 | 185 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / k ) ) / k ) e. CC ) | 
						
							| 187 | 186 | adantlrr |  |-  ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / k ) ) / k ) e. CC ) | 
						
							| 188 | 168 169 171 179 187 | musumsum |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( ( log ` ( x / k ) ) / k ) ) = ( ( log ` ( x / 1 ) ) / 1 ) ) | 
						
							| 189 | 8 | rpcnd |  |-  ( ( ph /\ x e. RR+ ) -> x e. CC ) | 
						
							| 190 | 189 | div1d |  |-  ( ( ph /\ x e. RR+ ) -> ( x / 1 ) = x ) | 
						
							| 191 | 190 | fveq2d |  |-  ( ( ph /\ x e. RR+ ) -> ( log ` ( x / 1 ) ) = ( log ` x ) ) | 
						
							| 192 | 191 | oveq1d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( log ` ( x / 1 ) ) / 1 ) = ( ( log ` x ) / 1 ) ) | 
						
							| 193 | 77 | div1d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) / 1 ) = ( log ` x ) ) | 
						
							| 194 | 192 193 | eqtrd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( log ` ( x / 1 ) ) / 1 ) = ( log ` x ) ) | 
						
							| 195 | 194 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` ( x / 1 ) ) / 1 ) = ( log ` x ) ) | 
						
							| 196 | 164 188 195 | 3eqtrd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = ( log ` x ) ) | 
						
							| 197 | 196 | oveq2d |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) | 
						
							| 198 | 107 197 | eqtrd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) | 
						
							| 199 | 198 | fveq2d |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) ) = ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) ) | 
						
							| 200 |  | ere |  |-  _e e. RR | 
						
							| 201 | 200 | a1i |  |-  ( ( ph /\ x e. RR+ ) -> _e e. RR ) | 
						
							| 202 |  | 1re |  |-  1 e. RR | 
						
							| 203 |  | 1lt2 |  |-  1 < 2 | 
						
							| 204 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 205 | 204 | simpli |  |-  2 < _e | 
						
							| 206 | 202 6 200 | lttri |  |-  ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) | 
						
							| 207 | 203 205 206 | mp2an |  |-  1 < _e | 
						
							| 208 | 202 200 207 | ltleii |  |-  1 <_ _e | 
						
							| 209 | 201 208 | jctir |  |-  ( ( ph /\ x e. RR+ ) -> ( _e e. RR /\ 1 <_ _e ) ) | 
						
							| 210 | 39 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> R e. RR ) | 
						
							| 211 | 19 | a1i |  |-  ( ph -> ( 1 / 2 ) e. RR ) | 
						
							| 212 |  | 1rp |  |-  1 e. RR+ | 
						
							| 213 |  | rphalfcl |  |-  ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) | 
						
							| 214 | 212 213 | ax-mp |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 215 |  | rpge0 |  |-  ( ( 1 / 2 ) e. RR+ -> 0 <_ ( 1 / 2 ) ) | 
						
							| 216 | 214 215 | mp1i |  |-  ( ph -> 0 <_ ( 1 / 2 ) ) | 
						
							| 217 | 20 | a1i |  |-  ( ph -> gamma e. RR ) | 
						
							| 218 |  | 0re |  |-  0 e. RR | 
						
							| 219 |  | emgt0 |  |-  0 < gamma | 
						
							| 220 | 218 20 219 | ltleii |  |-  0 <_ gamma | 
						
							| 221 | 220 | a1i |  |-  ( ph -> 0 <_ gamma ) | 
						
							| 222 | 22 | absge0d |  |-  ( ph -> 0 <_ ( abs ` L ) ) | 
						
							| 223 | 217 23 221 222 | addge0d |  |-  ( ph -> 0 <_ ( gamma + ( abs ` L ) ) ) | 
						
							| 224 | 211 25 216 223 | addge0d |  |-  ( ph -> 0 <_ ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) ) | 
						
							| 225 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 226 | 31 | nncnd |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> m e. CC ) | 
						
							| 227 | 226 | mullidd |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( 1 x. m ) = m ) | 
						
							| 228 | 32 | rpred |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> m e. RR ) | 
						
							| 229 | 6 | a1i |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> 2 e. RR ) | 
						
							| 230 | 200 | a1i |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> _e e. RR ) | 
						
							| 231 |  | elfzle2 |  |-  ( m e. ( 1 ... 2 ) -> m <_ 2 ) | 
						
							| 232 | 231 | adantl |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> m <_ 2 ) | 
						
							| 233 | 6 200 205 | ltleii |  |-  2 <_ _e | 
						
							| 234 | 233 | a1i |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> 2 <_ _e ) | 
						
							| 235 | 228 229 230 232 234 | letrd |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> m <_ _e ) | 
						
							| 236 | 227 235 | eqbrtrd |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( 1 x. m ) <_ _e ) | 
						
							| 237 |  | 1red |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> 1 e. RR ) | 
						
							| 238 | 237 230 32 | lemuldivd |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( ( 1 x. m ) <_ _e <-> 1 <_ ( _e / m ) ) ) | 
						
							| 239 | 236 238 | mpbid |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> 1 <_ ( _e / m ) ) | 
						
							| 240 |  | logleb |  |-  ( ( 1 e. RR+ /\ ( _e / m ) e. RR+ ) -> ( 1 <_ ( _e / m ) <-> ( log ` 1 ) <_ ( log ` ( _e / m ) ) ) ) | 
						
							| 241 | 212 34 240 | sylancr |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( 1 <_ ( _e / m ) <-> ( log ` 1 ) <_ ( log ` ( _e / m ) ) ) ) | 
						
							| 242 | 239 241 | mpbid |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( log ` 1 ) <_ ( log ` ( _e / m ) ) ) | 
						
							| 243 | 225 242 | eqbrtrrid |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> 0 <_ ( log ` ( _e / m ) ) ) | 
						
							| 244 | 35 32 243 | divge0d |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> 0 <_ ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 245 | 28 36 244 | fsumge0 |  |-  ( ph -> 0 <_ sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 246 | 27 37 224 245 | addge0d |  |-  ( ph -> 0 <_ ( ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) + sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) ) | 
						
							| 247 | 246 4 | breqtrrdi |  |-  ( ph -> 0 <_ R ) | 
						
							| 248 | 247 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> 0 <_ R ) | 
						
							| 249 | 210 248 | jca |  |-  ( ( ph /\ x e. RR+ ) -> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 250 | 85 97 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) e. CC ) | 
						
							| 251 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( log ` ( x / n ) ) / x ) e. RR ) -> ( 2 x. ( ( log ` ( x / n ) ) / x ) ) e. RR ) | 
						
							| 252 | 6 15 251 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( log ` ( x / n ) ) / x ) ) e. RR ) | 
						
							| 253 | 6 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. RR ) | 
						
							| 254 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 255 | 254 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ 2 ) | 
						
							| 256 | 98 | mullidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) | 
						
							| 257 |  | fznnfl |  |-  ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 258 | 123 257 | syl |  |-  ( ( ph /\ x e. RR+ ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 259 | 258 | simplbda |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) | 
						
							| 260 | 256 259 | eqbrtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) | 
						
							| 261 |  | 1red |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 262 | 57 | nnrpd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 263 | 261 124 262 | lemuldivd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) | 
						
							| 264 | 260 263 | mpbid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) | 
						
							| 265 |  | logleb |  |-  ( ( 1 e. RR+ /\ ( x / n ) e. RR+ ) -> ( 1 <_ ( x / n ) <-> ( log ` 1 ) <_ ( log ` ( x / n ) ) ) ) | 
						
							| 266 | 212 12 265 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 <_ ( x / n ) <-> ( log ` 1 ) <_ ( log ` ( x / n ) ) ) ) | 
						
							| 267 | 264 266 | mpbid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` 1 ) <_ ( log ` ( x / n ) ) ) | 
						
							| 268 | 225 267 | eqbrtrrid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( log ` ( x / n ) ) ) | 
						
							| 269 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 270 | 269 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. RR /\ 0 < x ) ) | 
						
							| 271 |  | divge0 |  |-  ( ( ( ( log ` ( x / n ) ) e. RR /\ 0 <_ ( log ` ( x / n ) ) ) /\ ( x e. RR /\ 0 < x ) ) -> 0 <_ ( ( log ` ( x / n ) ) / x ) ) | 
						
							| 272 | 13 268 270 271 | syl21anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( log ` ( x / n ) ) / x ) ) | 
						
							| 273 | 253 15 255 272 | mulge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( 2 x. ( ( log ` ( x / n ) ) / x ) ) ) | 
						
							| 274 | 250 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) e. RR ) | 
						
							| 275 | 274 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) e. RR ) | 
						
							| 276 | 97 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) e. CC ) | 
						
							| 277 | 276 | abscld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) e. RR ) | 
						
							| 278 | 262 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) | 
						
							| 279 | 252 278 | remulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) e. RR ) | 
						
							| 280 | 279 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) e. RR ) | 
						
							| 281 | 85 97 | absmuld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) = ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) ) | 
						
							| 282 | 85 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) | 
						
							| 283 | 97 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) e. RR ) | 
						
							| 284 | 97 | absge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 285 |  | mule1 |  |-  ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) | 
						
							| 286 | 57 285 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) | 
						
							| 287 | 282 261 283 284 286 | lemul1ad |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ ( 1 x. ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) ) | 
						
							| 288 | 283 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) e. CC ) | 
						
							| 289 | 288 | mullidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) = ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 290 | 287 289 | breqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 291 | 281 290 | eqbrtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 292 | 291 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 293 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> F ~~>r L ) | 
						
							| 294 | 12 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( x / n ) e. RR+ ) | 
						
							| 295 |  | simpr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> _e <_ ( x / n ) ) | 
						
							| 296 | 1 293 294 295 | mulog2sumlem1 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) <_ ( 2 x. ( ( log ` ( x / n ) ) / ( x / n ) ) ) ) | 
						
							| 297 | 72 96 | abssubd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - T ) ) ) | 
						
							| 298 | 297 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - T ) ) ) | 
						
							| 299 | 3 | oveq2i |  |-  ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - T ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) | 
						
							| 300 | 299 | fveq2i |  |-  ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - T ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) | 
						
							| 301 | 298 300 | eqtrdi |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) - ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) ) | 
						
							| 302 |  | 2cnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) | 
						
							| 303 | 15 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) / x ) e. CC ) | 
						
							| 304 | 302 303 98 | mulassd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) = ( 2 x. ( ( ( log ` ( x / n ) ) / x ) x. n ) ) ) | 
						
							| 305 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 306 | 305 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 307 |  | divdiv2 |  |-  ( ( ( log ` ( x / n ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( log ` ( x / n ) ) / ( x / n ) ) = ( ( ( log ` ( x / n ) ) x. n ) / x ) ) | 
						
							| 308 | 63 306 110 307 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) / ( x / n ) ) = ( ( ( log ` ( x / n ) ) x. n ) / x ) ) | 
						
							| 309 |  | div23 |  |-  ( ( ( log ` ( x / n ) ) e. CC /\ n e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( log ` ( x / n ) ) x. n ) / x ) = ( ( ( log ` ( x / n ) ) / x ) x. n ) ) | 
						
							| 310 | 63 98 306 309 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) x. n ) / x ) = ( ( ( log ` ( x / n ) ) / x ) x. n ) ) | 
						
							| 311 | 308 310 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) / ( x / n ) ) = ( ( ( log ` ( x / n ) ) / x ) x. n ) ) | 
						
							| 312 | 311 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( log ` ( x / n ) ) / ( x / n ) ) ) = ( 2 x. ( ( ( log ` ( x / n ) ) / x ) x. n ) ) ) | 
						
							| 313 | 304 312 | eqtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) = ( 2 x. ( ( log ` ( x / n ) ) / ( x / n ) ) ) ) | 
						
							| 314 | 313 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) = ( 2 x. ( ( log ` ( x / n ) ) / ( x / n ) ) ) ) | 
						
							| 315 | 296 301 314 | 3brtr4d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) <_ ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) ) | 
						
							| 316 | 275 277 280 292 315 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ _e <_ ( x / n ) ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ ( ( 2 x. ( ( log ` ( x / n ) ) / x ) ) x. n ) ) | 
						
							| 317 | 274 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) e. RR ) | 
						
							| 318 | 283 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) e. RR ) | 
						
							| 319 | 39 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> R e. RR ) | 
						
							| 320 | 291 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 321 | 72 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> T e. CC ) | 
						
							| 322 | 321 | abscld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` T ) e. RR ) | 
						
							| 323 | 96 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) e. CC ) | 
						
							| 324 | 323 | abscld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) e. RR ) | 
						
							| 325 | 322 324 | readdcld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( abs ` T ) + ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) e. RR ) | 
						
							| 326 | 321 323 | abs2dif2d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) <_ ( ( abs ` T ) + ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) | 
						
							| 327 | 27 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) e. RR ) | 
						
							| 328 | 37 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) e. RR ) | 
						
							| 329 | 3 | fveq2i |  |-  ( abs ` T ) = ( abs ` ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) | 
						
							| 330 | 329 322 | eqeltrrid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) e. RR ) | 
						
							| 331 | 65 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) e. CC ) | 
						
							| 332 | 331 | abscld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) e. RR ) | 
						
							| 333 | 70 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( gamma x. ( log ` ( x / n ) ) ) - L ) e. CC ) | 
						
							| 334 | 333 | abscld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) e. RR ) | 
						
							| 335 | 332 334 | readdcld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) + ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) e. RR ) | 
						
							| 336 | 331 333 | abstrid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) <_ ( ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) + ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) | 
						
							| 337 | 19 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( 1 / 2 ) e. RR ) | 
						
							| 338 | 25 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( gamma + ( abs ` L ) ) e. RR ) | 
						
							| 339 | 13 | resqcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. RR ) | 
						
							| 340 | 339 | rehalfcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) e. RR ) | 
						
							| 341 | 13 | sqge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( log ` ( x / n ) ) ^ 2 ) ) | 
						
							| 342 |  | 2pos |  |-  0 < 2 | 
						
							| 343 | 6 342 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 344 | 343 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 345 |  | divge0 |  |-  ( ( ( ( ( log ` ( x / n ) ) ^ 2 ) e. RR /\ 0 <_ ( ( log ` ( x / n ) ) ^ 2 ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) | 
						
							| 346 | 339 341 344 345 | syl21anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) | 
						
							| 347 | 340 346 | absidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) = ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) | 
						
							| 348 | 347 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) = ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) | 
						
							| 349 | 12 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 350 |  | ltle |  |-  ( ( ( x / n ) e. RR /\ _e e. RR ) -> ( ( x / n ) < _e -> ( x / n ) <_ _e ) ) | 
						
							| 351 | 349 200 350 | sylancl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) < _e -> ( x / n ) <_ _e ) ) | 
						
							| 352 | 351 | imp |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( x / n ) <_ _e ) | 
						
							| 353 | 12 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( x / n ) e. RR+ ) | 
						
							| 354 |  | logleb |  |-  ( ( ( x / n ) e. RR+ /\ _e e. RR+ ) -> ( ( x / n ) <_ _e <-> ( log ` ( x / n ) ) <_ ( log ` _e ) ) ) | 
						
							| 355 | 353 29 354 | sylancl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( x / n ) <_ _e <-> ( log ` ( x / n ) ) <_ ( log ` _e ) ) ) | 
						
							| 356 | 352 355 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( log ` ( x / n ) ) <_ ( log ` _e ) ) | 
						
							| 357 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 358 | 356 357 | breqtrdi |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( log ` ( x / n ) ) <_ 1 ) | 
						
							| 359 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 360 | 359 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ 1 ) | 
						
							| 361 | 13 261 268 360 | le2sqd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) <_ 1 <-> ( ( log ` ( x / n ) ) ^ 2 ) <_ ( 1 ^ 2 ) ) ) | 
						
							| 362 | 361 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( log ` ( x / n ) ) <_ 1 <-> ( ( log ` ( x / n ) ) ^ 2 ) <_ ( 1 ^ 2 ) ) ) | 
						
							| 363 | 358 362 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( log ` ( x / n ) ) ^ 2 ) <_ ( 1 ^ 2 ) ) | 
						
							| 364 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 365 | 363 364 | breqtrdi |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( log ` ( x / n ) ) ^ 2 ) <_ 1 ) | 
						
							| 366 | 339 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. RR ) | 
						
							| 367 |  | 1red |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> 1 e. RR ) | 
						
							| 368 | 343 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 369 |  | lediv1 |  |-  ( ( ( ( log ` ( x / n ) ) ^ 2 ) e. RR /\ 1 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) <_ 1 <-> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) <_ ( 1 / 2 ) ) ) | 
						
							| 370 | 366 367 368 369 | syl3anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) <_ 1 <-> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) <_ ( 1 / 2 ) ) ) | 
						
							| 371 | 365 370 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) <_ ( 1 / 2 ) ) | 
						
							| 372 | 348 371 | eqbrtrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) <_ ( 1 / 2 ) ) | 
						
							| 373 | 69 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` L ) e. RR ) | 
						
							| 374 | 67 373 | readdcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( gamma x. ( log ` ( x / n ) ) ) + ( abs ` L ) ) e. RR ) | 
						
							| 375 | 374 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( gamma x. ( log ` ( x / n ) ) ) + ( abs ` L ) ) e. RR ) | 
						
							| 376 | 68 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( gamma x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 377 | 22 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> L e. CC ) | 
						
							| 378 | 376 377 | abs2dif2d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) <_ ( ( abs ` ( gamma x. ( log ` ( x / n ) ) ) ) + ( abs ` L ) ) ) | 
						
							| 379 | 20 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> gamma e. RR ) | 
						
							| 380 | 220 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ gamma ) | 
						
							| 381 | 379 13 380 268 | mulge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( gamma x. ( log ` ( x / n ) ) ) ) | 
						
							| 382 | 67 381 | absidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( gamma x. ( log ` ( x / n ) ) ) ) = ( gamma x. ( log ` ( x / n ) ) ) ) | 
						
							| 383 | 382 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( gamma x. ( log ` ( x / n ) ) ) ) = ( gamma x. ( log ` ( x / n ) ) ) ) | 
						
							| 384 | 383 | oveq1d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( abs ` ( gamma x. ( log ` ( x / n ) ) ) ) + ( abs ` L ) ) = ( ( gamma x. ( log ` ( x / n ) ) ) + ( abs ` L ) ) ) | 
						
							| 385 | 378 384 | breqtrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) <_ ( ( gamma x. ( log ` ( x / n ) ) ) + ( abs ` L ) ) ) | 
						
							| 386 | 67 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( gamma x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 387 | 20 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> gamma e. RR ) | 
						
							| 388 | 377 | abscld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` L ) e. RR ) | 
						
							| 389 | 13 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 390 | 387 219 | jctir |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( gamma e. RR /\ 0 < gamma ) ) | 
						
							| 391 |  | lemul2 |  |-  ( ( ( log ` ( x / n ) ) e. RR /\ 1 e. RR /\ ( gamma e. RR /\ 0 < gamma ) ) -> ( ( log ` ( x / n ) ) <_ 1 <-> ( gamma x. ( log ` ( x / n ) ) ) <_ ( gamma x. 1 ) ) ) | 
						
							| 392 | 389 367 390 391 | syl3anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( log ` ( x / n ) ) <_ 1 <-> ( gamma x. ( log ` ( x / n ) ) ) <_ ( gamma x. 1 ) ) ) | 
						
							| 393 | 358 392 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( gamma x. ( log ` ( x / n ) ) ) <_ ( gamma x. 1 ) ) | 
						
							| 394 | 20 | recni |  |-  gamma e. CC | 
						
							| 395 | 394 | mulridi |  |-  ( gamma x. 1 ) = gamma | 
						
							| 396 | 393 395 | breqtrdi |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( gamma x. ( log ` ( x / n ) ) ) <_ gamma ) | 
						
							| 397 | 386 387 388 396 | leadd1dd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( gamma x. ( log ` ( x / n ) ) ) + ( abs ` L ) ) <_ ( gamma + ( abs ` L ) ) ) | 
						
							| 398 | 334 375 338 385 397 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) <_ ( gamma + ( abs ` L ) ) ) | 
						
							| 399 | 332 334 337 338 372 398 | le2addd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( abs ` ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) + ( abs ` ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) <_ ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) ) | 
						
							| 400 | 330 335 327 336 399 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) <_ ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) ) | 
						
							| 401 | 329 400 | eqbrtrid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` T ) <_ ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) ) | 
						
							| 402 | 87 93 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) e. RR ) | 
						
							| 403 | 86 402 | fsumrecl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) e. RR ) | 
						
							| 404 | 403 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) e. RR ) | 
						
							| 405 | 87 91 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` ( ( x / n ) / m ) ) e. RR ) | 
						
							| 406 | 87 130 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. CC ) | 
						
							| 407 | 406 | mullidd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 x. m ) = m ) | 
						
							| 408 |  | fznnfl |  |-  ( ( x / n ) e. RR -> ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) <-> ( m e. NN /\ m <_ ( x / n ) ) ) ) | 
						
							| 409 | 349 408 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) <-> ( m e. NN /\ m <_ ( x / n ) ) ) ) | 
						
							| 410 | 409 | simplbda |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m <_ ( x / n ) ) | 
						
							| 411 | 407 410 | eqbrtrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 x. m ) <_ ( x / n ) ) | 
						
							| 412 |  | 1red |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> 1 e. RR ) | 
						
							| 413 | 349 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) | 
						
							| 414 | 117 | rpregt0d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. NN ) -> ( m e. RR /\ 0 < m ) ) | 
						
							| 415 | 87 414 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( m e. RR /\ 0 < m ) ) | 
						
							| 416 |  | lemuldiv |  |-  ( ( 1 e. RR /\ ( x / n ) e. RR /\ ( m e. RR /\ 0 < m ) ) -> ( ( 1 x. m ) <_ ( x / n ) <-> 1 <_ ( ( x / n ) / m ) ) ) | 
						
							| 417 | 412 413 415 416 | syl3anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( 1 x. m ) <_ ( x / n ) <-> 1 <_ ( ( x / n ) / m ) ) ) | 
						
							| 418 | 411 417 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> 1 <_ ( ( x / n ) / m ) ) | 
						
							| 419 | 87 90 | sylan2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR+ ) | 
						
							| 420 |  | logleb |  |-  ( ( 1 e. RR+ /\ ( ( x / n ) / m ) e. RR+ ) -> ( 1 <_ ( ( x / n ) / m ) <-> ( log ` 1 ) <_ ( log ` ( ( x / n ) / m ) ) ) ) | 
						
							| 421 | 212 419 420 | sylancr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 <_ ( ( x / n ) / m ) <-> ( log ` 1 ) <_ ( log ` ( ( x / n ) / m ) ) ) ) | 
						
							| 422 | 418 421 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` 1 ) <_ ( log ` ( ( x / n ) / m ) ) ) | 
						
							| 423 | 225 422 | eqbrtrrid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> 0 <_ ( log ` ( ( x / n ) / m ) ) ) | 
						
							| 424 |  | divge0 |  |-  ( ( ( ( log ` ( ( x / n ) / m ) ) e. RR /\ 0 <_ ( log ` ( ( x / n ) / m ) ) ) /\ ( m e. RR /\ 0 < m ) ) -> 0 <_ ( ( log ` ( ( x / n ) / m ) ) / m ) ) | 
						
							| 425 | 405 423 415 424 | syl21anc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> 0 <_ ( ( log ` ( ( x / n ) / m ) ) / m ) ) | 
						
							| 426 | 86 402 425 | fsumge0 |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) | 
						
							| 427 | 426 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> 0 <_ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) | 
						
							| 428 | 404 427 | absidd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) | 
						
							| 429 |  | fzfid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 430 | 349 | flcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. ZZ ) | 
						
							| 431 | 430 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( |_ ` ( x / n ) ) e. ZZ ) | 
						
							| 432 |  | 2z |  |-  2 e. ZZ | 
						
							| 433 | 432 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> 2 e. ZZ ) | 
						
							| 434 | 349 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( x / n ) e. RR ) | 
						
							| 435 | 200 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> _e e. RR ) | 
						
							| 436 |  | 3re |  |-  3 e. RR | 
						
							| 437 | 436 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> 3 e. RR ) | 
						
							| 438 |  | simpr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( x / n ) < _e ) | 
						
							| 439 | 204 | simpri |  |-  _e < 3 | 
						
							| 440 | 439 | a1i |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> _e < 3 ) | 
						
							| 441 | 434 435 437 438 440 | lttrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( x / n ) < 3 ) | 
						
							| 442 |  | 3z |  |-  3 e. ZZ | 
						
							| 443 |  | fllt |  |-  ( ( ( x / n ) e. RR /\ 3 e. ZZ ) -> ( ( x / n ) < 3 <-> ( |_ ` ( x / n ) ) < 3 ) ) | 
						
							| 444 | 434 442 443 | sylancl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( x / n ) < 3 <-> ( |_ ` ( x / n ) ) < 3 ) ) | 
						
							| 445 | 441 444 | mpbid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( |_ ` ( x / n ) ) < 3 ) | 
						
							| 446 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 447 | 445 446 | breqtrdi |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( |_ ` ( x / n ) ) < ( 2 + 1 ) ) | 
						
							| 448 |  | zleltp1 |  |-  ( ( ( |_ ` ( x / n ) ) e. ZZ /\ 2 e. ZZ ) -> ( ( |_ ` ( x / n ) ) <_ 2 <-> ( |_ ` ( x / n ) ) < ( 2 + 1 ) ) ) | 
						
							| 449 | 431 432 448 | sylancl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( |_ ` ( x / n ) ) <_ 2 <-> ( |_ ` ( x / n ) ) < ( 2 + 1 ) ) ) | 
						
							| 450 | 447 449 | mpbird |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( |_ ` ( x / n ) ) <_ 2 ) | 
						
							| 451 |  | eluz2 |  |-  ( 2 e. ( ZZ>= ` ( |_ ` ( x / n ) ) ) <-> ( ( |_ ` ( x / n ) ) e. ZZ /\ 2 e. ZZ /\ ( |_ ` ( x / n ) ) <_ 2 ) ) | 
						
							| 452 | 431 433 450 451 | syl3anbrc |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> 2 e. ( ZZ>= ` ( |_ ` ( x / n ) ) ) ) | 
						
							| 453 |  | fzss2 |  |-  ( 2 e. ( ZZ>= ` ( |_ ` ( x / n ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) C_ ( 1 ... 2 ) ) | 
						
							| 454 | 452 453 | syl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( 1 ... ( |_ ` ( x / n ) ) ) C_ ( 1 ... 2 ) ) | 
						
							| 455 | 454 | sselda |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. ( 1 ... 2 ) ) | 
						
							| 456 | 36 | ad5ant15 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( log ` ( _e / m ) ) / m ) e. RR ) | 
						
							| 457 | 455 456 | syldan |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` ( _e / m ) ) / m ) e. RR ) | 
						
							| 458 | 429 457 | fsumrecl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( _e / m ) ) / m ) e. RR ) | 
						
							| 459 | 93 | adantlr |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. NN ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) e. RR ) | 
						
							| 460 | 87 459 | sylan2 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) e. RR ) | 
						
							| 461 | 352 | adantr |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( x / n ) <_ _e ) | 
						
							| 462 | 434 | adantr |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( x / n ) e. RR ) | 
						
							| 463 | 200 | a1i |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> _e e. RR ) | 
						
							| 464 | 32 | rpregt0d |  |-  ( ( ph /\ m e. ( 1 ... 2 ) ) -> ( m e. RR /\ 0 < m ) ) | 
						
							| 465 | 464 | ad5ant15 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( m e. RR /\ 0 < m ) ) | 
						
							| 466 |  | lediv1 |  |-  ( ( ( x / n ) e. RR /\ _e e. RR /\ ( m e. RR /\ 0 < m ) ) -> ( ( x / n ) <_ _e <-> ( ( x / n ) / m ) <_ ( _e / m ) ) ) | 
						
							| 467 | 462 463 465 466 | syl3anc |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( x / n ) <_ _e <-> ( ( x / n ) / m ) <_ ( _e / m ) ) ) | 
						
							| 468 | 461 467 | mpbid |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( x / n ) / m ) <_ ( _e / m ) ) | 
						
							| 469 | 90 | adantlr |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. NN ) -> ( ( x / n ) / m ) e. RR+ ) | 
						
							| 470 | 30 469 | sylan2 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( x / n ) / m ) e. RR+ ) | 
						
							| 471 | 34 | ad5ant15 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( _e / m ) e. RR+ ) | 
						
							| 472 | 470 471 | logled |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( ( x / n ) / m ) <_ ( _e / m ) <-> ( log ` ( ( x / n ) / m ) ) <_ ( log ` ( _e / m ) ) ) ) | 
						
							| 473 | 468 472 | mpbid |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( log ` ( ( x / n ) / m ) ) <_ ( log ` ( _e / m ) ) ) | 
						
							| 474 | 91 | adantlr |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. NN ) -> ( log ` ( ( x / n ) / m ) ) e. RR ) | 
						
							| 475 | 30 474 | sylan2 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( log ` ( ( x / n ) / m ) ) e. RR ) | 
						
							| 476 | 35 | ad5ant15 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( log ` ( _e / m ) ) e. RR ) | 
						
							| 477 |  | lediv1 |  |-  ( ( ( log ` ( ( x / n ) / m ) ) e. RR /\ ( log ` ( _e / m ) ) e. RR /\ ( m e. RR /\ 0 < m ) ) -> ( ( log ` ( ( x / n ) / m ) ) <_ ( log ` ( _e / m ) ) <-> ( ( log ` ( ( x / n ) / m ) ) / m ) <_ ( ( log ` ( _e / m ) ) / m ) ) ) | 
						
							| 478 | 475 476 465 477 | syl3anc |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( log ` ( ( x / n ) / m ) ) <_ ( log ` ( _e / m ) ) <-> ( ( log ` ( ( x / n ) / m ) ) / m ) <_ ( ( log ` ( _e / m ) ) / m ) ) ) | 
						
							| 479 | 473 478 | mpbid |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) <_ ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 480 | 455 479 | syldan |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` ( ( x / n ) / m ) ) / m ) <_ ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 481 | 429 460 457 480 | fsumle |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) <_ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 482 |  | fzfid |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( 1 ... 2 ) e. Fin ) | 
						
							| 483 | 244 | ad5ant15 |  |-  ( ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) /\ m e. ( 1 ... 2 ) ) -> 0 <_ ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 484 | 482 456 483 454 | fsumless |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( _e / m ) ) / m ) <_ sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 485 | 404 458 328 481 484 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) <_ sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 486 | 428 485 | eqbrtrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) <_ sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 487 | 322 324 327 328 401 486 | le2addd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( abs ` T ) + ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) <_ ( ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) + sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) ) | 
						
							| 488 | 487 4 | breqtrrdi |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( ( abs ` T ) + ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) <_ R ) | 
						
							| 489 | 318 325 319 326 488 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) <_ R ) | 
						
							| 490 | 317 318 319 320 489 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / n ) < _e ) -> ( abs ` ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) ) <_ R ) | 
						
							| 491 | 8 209 249 250 252 273 316 490 | fsumharmonic |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( log ` ( x / n ) ) / x ) ) + ( R x. ( ( log ` _e ) + 1 ) ) ) ) | 
						
							| 492 |  | 2cnd |  |-  ( ( ph /\ x e. RR+ ) -> 2 e. CC ) | 
						
							| 493 | 7 492 303 | fsummulc2 |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( log ` ( x / n ) ) / x ) ) ) | 
						
							| 494 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 495 | 357 | oveq1i |  |-  ( ( log ` _e ) + 1 ) = ( 1 + 1 ) | 
						
							| 496 | 494 495 | eqtr4i |  |-  2 = ( ( log ` _e ) + 1 ) | 
						
							| 497 | 496 | a1i |  |-  ( ( ph /\ x e. RR+ ) -> 2 = ( ( log ` _e ) + 1 ) ) | 
						
							| 498 | 497 | oveq2d |  |-  ( ( ph /\ x e. RR+ ) -> ( R x. 2 ) = ( R x. ( ( log ` _e ) + 1 ) ) ) | 
						
							| 499 | 493 498 | oveq12d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( log ` ( x / n ) ) / x ) ) + ( R x. ( ( log ` _e ) + 1 ) ) ) ) | 
						
							| 500 | 491 499 | breqtrrd |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) ) <_ ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) | 
						
							| 501 | 500 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( T - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` ( ( x / n ) / m ) ) / m ) ) ) / n ) ) <_ ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) | 
						
							| 502 | 199 501 | eqbrtrrd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) <_ ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) | 
						
							| 503 | 56 | leabsd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) <_ ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) ) | 
						
							| 504 | 503 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) <_ ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) ) | 
						
							| 505 | 80 81 84 502 504 | letrd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) <_ ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) + ( R x. 2 ) ) ) ) | 
						
							| 506 | 5 55 56 78 505 | o1le |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. T ) - ( log ` x ) ) ) e. O(1) ) |