| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 |  |-  F = ( y e. RR+ |-> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) | 
						
							| 2 |  | mulog2sumlem.1 |  |-  ( ph -> F ~~>r L ) | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 | 3 | a1i |  |-  ( ( ph /\ x e. RR+ ) -> 2 e. CC ) | 
						
							| 5 |  | fzfid |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 6 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 8 |  | mucl |  |-  ( n e. NN -> ( mmu ` n ) e. ZZ ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 10 | 9 | zred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 11 | 10 7 | nndivred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 14 | 6 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 15 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 16 | 13 14 15 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 17 | 16 | relogcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) | 
						
							| 19 | 18 | sqcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) | 
						
							| 20 | 19 | halfcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) e. CC ) | 
						
							| 21 | 12 20 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) e. CC ) | 
						
							| 22 | 5 21 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) e. CC ) | 
						
							| 23 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) | 
						
							| 26 | 4 22 25 | subdid |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 27 | 5 4 21 | fsummulc2 |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) ) | 
						
							| 28 | 3 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) | 
						
							| 29 | 28 12 20 | mul12d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 2 x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) ) | 
						
							| 30 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 31 | 30 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 =/= 0 ) | 
						
							| 32 | 19 28 31 | divcan2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) = ( ( log ` ( x / n ) ) ^ 2 ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( 2 x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) = ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) ) | 
						
							| 34 | 29 33 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) = ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) ) | 
						
							| 35 | 34 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) ) | 
						
							| 36 | 27 35 | eqtrd |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) - ( 2 x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 38 | 26 37 | eqtrd |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 39 | 38 | mpteq2dva |  |-  ( ph -> ( x e. RR+ |-> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) ) | 
						
							| 40 | 22 25 | subcld |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) e. CC ) | 
						
							| 41 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 42 |  | o1const |  |-  ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) | 
						
							| 43 | 41 3 42 | mp2an |  |-  ( x e. RR+ |-> 2 ) e. O(1) | 
						
							| 44 | 43 | a1i |  |-  ( ph -> ( x e. RR+ |-> 2 ) e. O(1) ) | 
						
							| 45 |  | emre |  |-  gamma e. RR | 
						
							| 46 | 45 | recni |  |-  gamma e. CC | 
						
							| 47 |  | mulcl |  |-  ( ( gamma e. CC /\ ( log ` ( x / n ) ) e. CC ) -> ( gamma x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 48 | 46 18 47 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( gamma x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 49 |  | rlimcl |  |-  ( F ~~>r L -> L e. CC ) | 
						
							| 50 | 2 49 | syl |  |-  ( ph -> L e. CC ) | 
						
							| 51 | 50 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> L e. CC ) | 
						
							| 52 | 48 51 | subcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( gamma x. ( log ` ( x / n ) ) ) - L ) e. CC ) | 
						
							| 53 | 20 52 | addcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) e. CC ) | 
						
							| 54 | 12 53 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) e. CC ) | 
						
							| 55 | 5 54 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) e. CC ) | 
						
							| 56 | 12 52 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) e. CC ) | 
						
							| 57 | 5 56 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) e. CC ) | 
						
							| 58 | 55 25 57 | sub32d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) ) | 
						
							| 59 | 5 54 56 | fsumsub |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) | 
						
							| 60 | 12 53 52 | subdid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) - ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = ( ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) | 
						
							| 61 | 20 52 | pncand |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) - ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) = ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) | 
						
							| 62 | 61 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) - ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) | 
						
							| 63 | 60 62 | eqtr3d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) | 
						
							| 64 | 63 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) | 
						
							| 65 | 59 64 | eqtr3d |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) | 
						
							| 67 | 58 66 | eqtrd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) | 
						
							| 68 | 67 | mpteq2dva |  |-  ( ph -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) ) | 
						
							| 69 | 55 25 | subcld |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) e. CC ) | 
						
							| 70 |  | eqid |  |-  ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) = ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) | 
						
							| 71 |  | eqid |  |-  ( ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) + sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) = ( ( ( 1 / 2 ) + ( gamma + ( abs ` L ) ) ) + sum_ m e. ( 1 ... 2 ) ( ( log ` ( _e / m ) ) / m ) ) | 
						
							| 72 | 1 2 70 71 | mulog2sumlem2 |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 73 | 46 | a1i |  |-  ( ( ph /\ x e. RR+ ) -> gamma e. CC ) | 
						
							| 74 | 12 18 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 75 | 5 73 74 | fsummulc2 |  |-  ( ( ph /\ x e. RR+ ) -> ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 76 | 50 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> L e. CC ) | 
						
							| 77 | 5 76 12 | fsummulc1 |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. L ) ) | 
						
							| 78 | 75 77 | oveq12d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. L ) ) ) | 
						
							| 79 |  | mulcl |  |-  ( ( gamma e. CC /\ ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) -> ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 80 | 46 74 79 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 81 | 12 51 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. L ) e. CC ) | 
						
							| 82 | 5 80 81 | fsumsub |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. L ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. L ) ) ) | 
						
							| 83 | 46 | a1i |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> gamma e. CC ) | 
						
							| 84 | 83 12 18 | mul12d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( ( ( mmu ` n ) / n ) x. ( gamma x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. L ) ) = ( ( ( ( mmu ` n ) / n ) x. ( gamma x. ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. L ) ) ) | 
						
							| 86 | 12 48 51 | subdid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) = ( ( ( ( mmu ` n ) / n ) x. ( gamma x. ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. L ) ) ) | 
						
							| 87 | 85 86 | eqtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. L ) ) = ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) | 
						
							| 88 | 87 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( gamma x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. L ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) | 
						
							| 89 | 78 82 88 | 3eqtr2d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) | 
						
							| 90 | 89 | mpteq2dva |  |-  ( ph -> ( x e. RR+ |-> ( ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) | 
						
							| 91 | 5 74 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 92 |  | mulcl |  |-  ( ( gamma e. CC /\ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) -> ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 93 | 46 91 92 | sylancr |  |-  ( ( ph /\ x e. RR+ ) -> ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 94 | 5 12 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 95 | 94 76 | mulcld |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) e. CC ) | 
						
							| 96 | 46 | a1i |  |-  ( ph -> gamma e. CC ) | 
						
							| 97 |  | o1const |  |-  ( ( RR+ C_ RR /\ gamma e. CC ) -> ( x e. RR+ |-> gamma ) e. O(1) ) | 
						
							| 98 | 41 96 97 | sylancr |  |-  ( ph -> ( x e. RR+ |-> gamma ) e. O(1) ) | 
						
							| 99 |  | mulogsum |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) | 
						
							| 100 | 99 | a1i |  |-  ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) | 
						
							| 101 | 73 91 98 100 | o1mul2 |  |-  ( ph -> ( x e. RR+ |-> ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) | 
						
							| 102 |  | mudivsum |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) | 
						
							| 103 | 102 | a1i |  |-  ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) ) | 
						
							| 104 |  | o1const |  |-  ( ( RR+ C_ RR /\ L e. CC ) -> ( x e. RR+ |-> L ) e. O(1) ) | 
						
							| 105 | 41 50 104 | sylancr |  |-  ( ph -> ( x e. RR+ |-> L ) e. O(1) ) | 
						
							| 106 | 94 76 103 105 | o1mul2 |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) ) e. O(1) ) | 
						
							| 107 | 93 95 101 106 | o1sub2 |  |-  ( ph -> ( x e. RR+ |-> ( ( gamma x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. L ) ) ) e. O(1) ) | 
						
							| 108 | 90 107 | eqeltrrd |  |-  ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) e. O(1) ) | 
						
							| 109 | 69 57 72 108 | o1sub2 |  |-  ( ph -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( gamma x. ( log ` ( x / n ) ) ) - L ) ) ) ) e. O(1) ) | 
						
							| 110 | 68 109 | eqeltrrd |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 111 | 4 40 44 110 | o1mul2 |  |-  ( ph -> ( x e. RR+ |-> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) / 2 ) ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 112 | 39 111 | eqeltrrd |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |