Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( T. -> 1 e. RR ) |
2 |
|
reex |
|- RR e. _V |
3 |
|
rpssre |
|- RR+ C_ RR |
4 |
2 3
|
ssexi |
|- RR+ e. _V |
5 |
4
|
a1i |
|- ( T. -> RR+ e. _V ) |
6 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
7 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
8 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
9 |
|
nndivre |
|- ( ( x e. RR /\ n e. NN ) -> ( x / n ) e. RR ) |
10 |
7 8 9
|
syl2an |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
11 |
10
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
12 |
|
reflcl |
|- ( ( x / n ) e. RR -> ( |_ ` ( x / n ) ) e. RR ) |
13 |
10 12
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. RR ) |
14 |
13
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. CC ) |
15 |
11 14
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) e. CC ) |
16 |
8
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
17 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
18 |
16 17
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
19 |
18
|
zcnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
20 |
15 19
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) |
21 |
6 20
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) |
22 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
23 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
24 |
21 22 23
|
divcld |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) e. CC ) |
25 |
24
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) e. CC ) |
26 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. _V ) |
27 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) ) |
28 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( 1 / x ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
29 |
5 25 26 27 28
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) |
30 |
3
|
a1i |
|- ( T. -> RR+ C_ RR ) |
31 |
21
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) |
32 |
22
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> x e. CC ) |
33 |
23
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> x =/= 0 ) |
34 |
31 32 33
|
absdivd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / ( abs ` x ) ) ) |
35 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
36 |
|
absid |
|- ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) |
37 |
35 36
|
syl |
|- ( x e. RR+ -> ( abs ` x ) = x ) |
38 |
37
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` x ) = x ) |
39 |
38
|
oveq2d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / ( abs ` x ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) ) |
40 |
34 39
|
eqtrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) ) |
41 |
31
|
abscld |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) e. RR ) |
42 |
|
fzfid |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
43 |
20
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) |
44 |
43
|
abscld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) e. RR ) |
45 |
42 44
|
fsumrecl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) e. RR ) |
46 |
7
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR ) |
47 |
42 43
|
fsumabs |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) ) |
48 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
49 |
46 48
|
syl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. RR ) |
50 |
|
1red |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
51 |
15
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) e. CC ) |
52 |
|
fz1ssnn |
|- ( 1 ... ( |_ ` x ) ) C_ NN |
53 |
52
|
a1i |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) C_ NN ) |
54 |
53
|
sselda |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
55 |
54 17
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
56 |
55
|
zcnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
57 |
51 56
|
absmuld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) = ( ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) x. ( abs ` ( mmu ` n ) ) ) ) |
58 |
51
|
abscld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) e. RR ) |
59 |
56
|
abscld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) |
60 |
51
|
absge0d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) ) |
61 |
56
|
absge0d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( mmu ` n ) ) ) |
62 |
|
simpl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR+ ) |
63 |
8
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
64 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
65 |
62 63 64
|
syl2an |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
66 |
3 65
|
sselid |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
67 |
66 12
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. RR ) |
68 |
|
flle |
|- ( ( x / n ) e. RR -> ( |_ ` ( x / n ) ) <_ ( x / n ) ) |
69 |
66 68
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) <_ ( x / n ) ) |
70 |
67 66 69
|
abssubge0d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) = ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) |
71 |
|
fracle1 |
|- ( ( x / n ) e. RR -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) <_ 1 ) |
72 |
66 71
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) <_ 1 ) |
73 |
70 72
|
eqbrtrd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) <_ 1 ) |
74 |
|
mule1 |
|- ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
75 |
54 74
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
76 |
58 50 59 50 60 61 73 75
|
lemul12ad |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) x. ( abs ` ( mmu ` n ) ) ) <_ ( 1 x. 1 ) ) |
77 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
78 |
76 77
|
breqtrdi |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) x. ( abs ` ( mmu ` n ) ) ) <_ 1 ) |
79 |
57 78
|
eqbrtrd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ 1 ) |
80 |
42 44 50 79
|
fsumle |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) 1 ) |
81 |
|
1cnd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. CC ) |
82 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ 1 e. CC ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 1 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 1 ) ) |
83 |
42 81 82
|
syl2anc |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 1 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 1 ) ) |
84 |
|
flge1nn |
|- ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
85 |
7 84
|
sylan |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
86 |
85
|
nnnn0d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. NN0 ) |
87 |
|
hashfz1 |
|- ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
88 |
86 87
|
syl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
89 |
88
|
oveq1d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 1 ) = ( ( |_ ` x ) x. 1 ) ) |
90 |
49
|
recnd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. CC ) |
91 |
90
|
mulid1d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( |_ ` x ) x. 1 ) = ( |_ ` x ) ) |
92 |
83 89 91
|
3eqtrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 1 = ( |_ ` x ) ) |
93 |
80 92
|
breqtrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ ( |_ ` x ) ) |
94 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
95 |
46 94
|
syl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) <_ x ) |
96 |
45 49 46 93 95
|
letrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ x ) |
97 |
41 45 46 47 96
|
letrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ x ) |
98 |
32
|
mulid1d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( x x. 1 ) = x ) |
99 |
97 98
|
breqtrrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ ( x x. 1 ) ) |
100 |
|
1red |
|- ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. RR ) |
101 |
41 100 62
|
ledivmuld |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) <_ 1 <-> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ ( x x. 1 ) ) ) |
102 |
99 101
|
mpbird |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) <_ 1 ) |
103 |
40 102
|
eqbrtrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) <_ 1 ) |
104 |
103
|
adantl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) <_ 1 ) |
105 |
30 25 1 1 104
|
elo1d |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) e. O(1) ) |
106 |
|
ax-1cn |
|- 1 e. CC |
107 |
|
divrcnv |
|- ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) |
108 |
106 107
|
ax-mp |
|- ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 |
109 |
|
rlimo1 |
|- ( ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) |
110 |
108 109
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) |
111 |
|
o1add |
|- ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) e. O(1) /\ ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) |
112 |
105 110 111
|
syl2anc |
|- ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) |
113 |
29 112
|
eqeltrrd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) e. O(1) ) |
114 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) e. _V ) |
115 |
18
|
zred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
116 |
115 16
|
nndivred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) |
117 |
116
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
118 |
6 117
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) |
119 |
118
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) |
120 |
118
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) |
121 |
120
|
abscld |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. RR ) |
122 |
117
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
123 |
42 32 122
|
fsummulc2 |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( mmu ` n ) / n ) ) ) |
124 |
14 19
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) e. CC ) |
125 |
124
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) e. CC ) |
126 |
42 43 125
|
fsumadd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) ) |
127 |
11
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
128 |
14
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. CC ) |
129 |
127 128
|
npcand |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) + ( |_ ` ( x / n ) ) ) = ( x / n ) ) |
130 |
129
|
oveq1d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) + ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) = ( ( x / n ) x. ( mmu ` n ) ) ) |
131 |
51 128 56
|
adddird |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) + ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) = ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) ) |
132 |
32
|
adantr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
133 |
54
|
nnrpd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
134 |
|
rpcnne0 |
|- ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) |
135 |
133 134
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
136 |
|
div23 |
|- ( ( x e. CC /\ ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( mmu ` n ) ) / n ) = ( ( x / n ) x. ( mmu ` n ) ) ) |
137 |
|
divass |
|- ( ( x e. CC /\ ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( mmu ` n ) ) / n ) = ( x x. ( ( mmu ` n ) / n ) ) ) |
138 |
136 137
|
eqtr3d |
|- ( ( x e. CC /\ ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x / n ) x. ( mmu ` n ) ) = ( x x. ( ( mmu ` n ) / n ) ) ) |
139 |
132 56 135 138
|
syl3anc |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) x. ( mmu ` n ) ) = ( x x. ( ( mmu ` n ) / n ) ) ) |
140 |
130 131 139
|
3eqtr3d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = ( x x. ( ( mmu ` n ) / n ) ) ) |
141 |
140
|
sumeq2dv |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( mmu ` n ) / n ) ) ) |
142 |
|
eqidd |
|- ( k = ( n x. m ) -> ( mmu ` n ) = ( mmu ` n ) ) |
143 |
|
ssrab2 |
|- { y e. NN | y || k } C_ NN |
144 |
|
simprr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. { y e. NN | y || k } ) |
145 |
143 144
|
sselid |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. NN ) |
146 |
145 17
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. ZZ ) |
147 |
146
|
zcnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. CC ) |
148 |
142 46 147
|
dvdsflsumcom |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( mmu ` n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) ) |
149 |
147
|
3impb |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) -> ( mmu ` n ) e. CC ) |
150 |
149
|
mulid1d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) -> ( ( mmu ` n ) x. 1 ) = ( mmu ` n ) ) |
151 |
150
|
2sumeq2dv |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. 1 ) = sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( mmu ` n ) ) |
152 |
|
eqidd |
|- ( k = 1 -> 1 = 1 ) |
153 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
154 |
85 153
|
eleqtrdi |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) |
155 |
|
eluzfz1 |
|- ( ( |_ ` x ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) |
156 |
154 155
|
syl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) |
157 |
|
1cnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
158 |
152 42 53 156 157
|
musumsum |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. 1 ) = 1 ) |
159 |
151 158
|
eqtr3d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( mmu ` n ) = 1 ) |
160 |
|
fzfid |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
161 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin /\ ( mmu ` n ) e. CC ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = ( ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) x. ( mmu ` n ) ) ) |
162 |
160 56 161
|
syl2anc |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = ( ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) x. ( mmu ` n ) ) ) |
163 |
|
rprege0 |
|- ( ( x / n ) e. RR+ -> ( ( x / n ) e. RR /\ 0 <_ ( x / n ) ) ) |
164 |
|
flge0nn0 |
|- ( ( ( x / n ) e. RR /\ 0 <_ ( x / n ) ) -> ( |_ ` ( x / n ) ) e. NN0 ) |
165 |
|
hashfz1 |
|- ( ( |_ ` ( x / n ) ) e. NN0 -> ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) = ( |_ ` ( x / n ) ) ) |
166 |
65 163 164 165
|
4syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) = ( |_ ` ( x / n ) ) ) |
167 |
166
|
oveq1d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) x. ( mmu ` n ) ) = ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) |
168 |
162 167
|
eqtrd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) |
169 |
168
|
sumeq2dv |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) |
170 |
148 159 169
|
3eqtr3rd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) = 1 ) |
171 |
170
|
oveq2d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) ) |
172 |
126 141 171
|
3eqtr3d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( mmu ` n ) / n ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) ) |
173 |
123 172
|
eqtrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) ) |
174 |
173
|
oveq1d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) / x ) ) |
175 |
120 32 33
|
divcan3d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) |
176 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
177 |
176
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( x e. CC /\ x =/= 0 ) ) |
178 |
|
divdir |
|- ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC /\ 1 e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) |
179 |
31 81 177 178
|
syl3anc |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) |
180 |
174 175 179
|
3eqtr3d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) |
181 |
180
|
fveq2d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) |
182 |
121 181
|
eqled |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) |
183 |
182
|
adantl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) |
184 |
1 113 114 119 183
|
o1le |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) ) |
185 |
184
|
mptru |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) |