| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 2 |  | reex |  |-  RR e. _V | 
						
							| 3 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 4 | 2 3 | ssexi |  |-  RR+ e. _V | 
						
							| 5 | 4 | a1i |  |-  ( T. -> RR+ e. _V ) | 
						
							| 6 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 7 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 8 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 9 |  | nndivre |  |-  ( ( x e. RR /\ n e. NN ) -> ( x / n ) e. RR ) | 
						
							| 10 | 7 8 9 | syl2an |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 11 | 10 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 12 |  | reflcl |  |-  ( ( x / n ) e. RR -> ( |_ ` ( x / n ) ) e. RR ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. CC ) | 
						
							| 15 | 11 14 | subcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) e. CC ) | 
						
							| 16 | 8 | adantl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 17 |  | mucl |  |-  ( n e. NN -> ( mmu ` n ) e. ZZ ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 19 | 18 | zcnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 20 | 15 19 | mulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) | 
						
							| 21 | 6 20 | fsumcl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) | 
						
							| 22 |  | rpcn |  |-  ( x e. RR+ -> x e. CC ) | 
						
							| 23 |  | rpne0 |  |-  ( x e. RR+ -> x =/= 0 ) | 
						
							| 24 | 21 22 23 | divcld |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) e. CC ) | 
						
							| 25 | 24 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) e. CC ) | 
						
							| 26 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. _V ) | 
						
							| 27 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) ) | 
						
							| 28 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( 1 / x ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) | 
						
							| 29 | 5 25 26 27 28 | offval2 |  |-  ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) | 
						
							| 30 | 3 | a1i |  |-  ( T. -> RR+ C_ RR ) | 
						
							| 31 | 21 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) | 
						
							| 32 | 22 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> x e. CC ) | 
						
							| 33 | 23 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> x =/= 0 ) | 
						
							| 34 | 31 32 33 | absdivd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / ( abs ` x ) ) ) | 
						
							| 35 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 36 |  | absid |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) | 
						
							| 37 | 35 36 | syl |  |-  ( x e. RR+ -> ( abs ` x ) = x ) | 
						
							| 38 | 37 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` x ) = x ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / ( abs ` x ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) ) | 
						
							| 40 | 34 39 | eqtrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) ) | 
						
							| 41 | 31 | abscld |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) e. RR ) | 
						
							| 42 |  | fzfid |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 43 | 20 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC ) | 
						
							| 44 | 43 | abscld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) e. RR ) | 
						
							| 45 | 42 44 | fsumrecl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) e. RR ) | 
						
							| 46 | 7 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR ) | 
						
							| 47 | 42 43 | fsumabs |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) ) | 
						
							| 48 |  | reflcl |  |-  ( x e. RR -> ( |_ ` x ) e. RR ) | 
						
							| 49 | 46 48 | syl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. RR ) | 
						
							| 50 |  | 1red |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 51 | 15 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) e. CC ) | 
						
							| 52 |  | fz1ssnn |  |-  ( 1 ... ( |_ ` x ) ) C_ NN | 
						
							| 53 | 52 | a1i |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) C_ NN ) | 
						
							| 54 | 53 | sselda |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 55 | 54 17 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 56 | 55 | zcnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 57 | 51 56 | absmuld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) = ( ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) x. ( abs ` ( mmu ` n ) ) ) ) | 
						
							| 58 | 51 | abscld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) e. RR ) | 
						
							| 59 | 56 | abscld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) | 
						
							| 60 | 51 | absge0d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 61 | 56 | absge0d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( mmu ` n ) ) ) | 
						
							| 62 |  | simpl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR+ ) | 
						
							| 63 | 8 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 64 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 65 | 62 63 64 | syl2an |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 66 | 3 65 | sselid |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 67 | 66 12 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. RR ) | 
						
							| 68 |  | flle |  |-  ( ( x / n ) e. RR -> ( |_ ` ( x / n ) ) <_ ( x / n ) ) | 
						
							| 69 | 66 68 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) <_ ( x / n ) ) | 
						
							| 70 | 67 66 69 | abssubge0d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) = ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) | 
						
							| 71 |  | fracle1 |  |-  ( ( x / n ) e. RR -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) <_ 1 ) | 
						
							| 72 | 66 71 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) <_ 1 ) | 
						
							| 73 | 70 72 | eqbrtrd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) <_ 1 ) | 
						
							| 74 |  | mule1 |  |-  ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) | 
						
							| 75 | 54 74 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) | 
						
							| 76 | 58 50 59 50 60 61 73 75 | lemul12ad |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) x. ( abs ` ( mmu ` n ) ) ) <_ ( 1 x. 1 ) ) | 
						
							| 77 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 78 | 76 77 | breqtrdi |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) x. ( abs ` ( mmu ` n ) ) ) <_ 1 ) | 
						
							| 79 | 57 78 | eqbrtrd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ 1 ) | 
						
							| 80 | 42 44 50 79 | fsumle |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) 1 ) | 
						
							| 81 |  | 1cnd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. CC ) | 
						
							| 82 |  | fsumconst |  |-  ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ 1 e. CC ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 1 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 1 ) ) | 
						
							| 83 | 42 81 82 | syl2anc |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 1 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 1 ) ) | 
						
							| 84 |  | flge1nn |  |-  ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 85 | 7 84 | sylan |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 86 | 85 | nnnn0d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 87 |  | hashfz1 |  |-  ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) | 
						
							| 88 | 86 87 | syl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 1 ) = ( ( |_ ` x ) x. 1 ) ) | 
						
							| 90 | 49 | recnd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. CC ) | 
						
							| 91 | 90 | mulridd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( |_ ` x ) x. 1 ) = ( |_ ` x ) ) | 
						
							| 92 | 83 89 91 | 3eqtrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 1 = ( |_ ` x ) ) | 
						
							| 93 | 80 92 | breqtrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ ( |_ ` x ) ) | 
						
							| 94 |  | flle |  |-  ( x e. RR -> ( |_ ` x ) <_ x ) | 
						
							| 95 | 46 94 | syl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) <_ x ) | 
						
							| 96 | 45 49 46 93 95 | letrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ x ) | 
						
							| 97 | 41 45 46 47 96 | letrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ x ) | 
						
							| 98 | 32 | mulridd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( x x. 1 ) = x ) | 
						
							| 99 | 97 98 | breqtrrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ ( x x. 1 ) ) | 
						
							| 100 |  | 1red |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. RR ) | 
						
							| 101 | 41 100 62 | ledivmuld |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) <_ 1 <-> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) <_ ( x x. 1 ) ) ) | 
						
							| 102 | 99 101 | mpbird |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) ) / x ) <_ 1 ) | 
						
							| 103 | 40 102 | eqbrtrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) <_ 1 ) | 
						
							| 104 | 103 | adantl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) <_ 1 ) | 
						
							| 105 | 30 25 1 1 104 | elo1d |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) e. O(1) ) | 
						
							| 106 |  | ax-1cn |  |-  1 e. CC | 
						
							| 107 |  | divrcnv |  |-  ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) | 
						
							| 108 | 106 107 | ax-mp |  |-  ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 | 
						
							| 109 |  | rlimo1 |  |-  ( ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) | 
						
							| 110 | 108 109 | mp1i |  |-  ( T. -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) | 
						
							| 111 |  | o1add |  |-  ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) e. O(1) /\ ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) | 
						
							| 112 | 105 110 111 | syl2anc |  |-  ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) | 
						
							| 113 | 29 112 | eqeltrrd |  |-  ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) e. O(1) ) | 
						
							| 114 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) e. _V ) | 
						
							| 115 | 18 | zred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 116 | 115 16 | nndivred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) | 
						
							| 117 | 116 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 118 | 6 117 | fsumcl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 119 | 118 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 120 | 118 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 121 | 120 | abscld |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. RR ) | 
						
							| 122 | 117 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 123 | 42 32 122 | fsummulc2 |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( mmu ` n ) / n ) ) ) | 
						
							| 124 | 14 19 | mulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) e. CC ) | 
						
							| 125 | 124 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) e. CC ) | 
						
							| 126 | 42 43 125 | fsumadd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) ) | 
						
							| 127 | 11 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 128 | 14 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. CC ) | 
						
							| 129 | 127 128 | npcand |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) + ( |_ ` ( x / n ) ) ) = ( x / n ) ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) + ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) = ( ( x / n ) x. ( mmu ` n ) ) ) | 
						
							| 131 | 51 128 56 | adddird |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) + ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) = ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) ) | 
						
							| 132 | 32 | adantr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 133 | 54 | nnrpd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 134 |  | rpcnne0 |  |-  ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 135 | 133 134 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 136 |  | div23 |  |-  ( ( x e. CC /\ ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( mmu ` n ) ) / n ) = ( ( x / n ) x. ( mmu ` n ) ) ) | 
						
							| 137 |  | divass |  |-  ( ( x e. CC /\ ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( mmu ` n ) ) / n ) = ( x x. ( ( mmu ` n ) / n ) ) ) | 
						
							| 138 | 136 137 | eqtr3d |  |-  ( ( x e. CC /\ ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x / n ) x. ( mmu ` n ) ) = ( x x. ( ( mmu ` n ) / n ) ) ) | 
						
							| 139 | 132 56 135 138 | syl3anc |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) x. ( mmu ` n ) ) = ( x x. ( ( mmu ` n ) / n ) ) ) | 
						
							| 140 | 130 131 139 | 3eqtr3d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = ( x x. ( ( mmu ` n ) / n ) ) ) | 
						
							| 141 | 140 | sumeq2dv |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( mmu ` n ) / n ) ) ) | 
						
							| 142 |  | eqidd |  |-  ( k = ( n x. m ) -> ( mmu ` n ) = ( mmu ` n ) ) | 
						
							| 143 |  | ssrab2 |  |-  { y e. NN | y || k } C_ NN | 
						
							| 144 |  | simprr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. { y e. NN | y || k } ) | 
						
							| 145 | 143 144 | sselid |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. NN ) | 
						
							| 146 | 145 17 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 147 | 146 | zcnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 148 | 142 46 147 | dvdsflsumcom |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( mmu ` n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) ) | 
						
							| 149 | 147 | 3impb |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) -> ( mmu ` n ) e. CC ) | 
						
							| 150 | 149 | mulridd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) -> ( ( mmu ` n ) x. 1 ) = ( mmu ` n ) ) | 
						
							| 151 | 150 | 2sumeq2dv |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. 1 ) = sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( mmu ` n ) ) | 
						
							| 152 |  | eqidd |  |-  ( k = 1 -> 1 = 1 ) | 
						
							| 153 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 154 | 85 153 | eleqtrdi |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) | 
						
							| 155 |  | eluzfz1 |  |-  ( ( |_ ` x ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 156 | 154 155 | syl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 157 |  | 1cnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 158 | 152 42 53 156 157 | musumsum |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. 1 ) = 1 ) | 
						
							| 159 | 151 158 | eqtr3d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( mmu ` n ) = 1 ) | 
						
							| 160 |  | fzfid |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 161 |  | fsumconst |  |-  ( ( ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin /\ ( mmu ` n ) e. CC ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = ( ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) x. ( mmu ` n ) ) ) | 
						
							| 162 | 160 56 161 | syl2anc |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = ( ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) x. ( mmu ` n ) ) ) | 
						
							| 163 |  | rprege0 |  |-  ( ( x / n ) e. RR+ -> ( ( x / n ) e. RR /\ 0 <_ ( x / n ) ) ) | 
						
							| 164 |  | flge0nn0 |  |-  ( ( ( x / n ) e. RR /\ 0 <_ ( x / n ) ) -> ( |_ ` ( x / n ) ) e. NN0 ) | 
						
							| 165 |  | hashfz1 |  |-  ( ( |_ ` ( x / n ) ) e. NN0 -> ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) = ( |_ ` ( x / n ) ) ) | 
						
							| 166 | 65 163 164 165 | 4syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) = ( |_ ` ( x / n ) ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( # ` ( 1 ... ( |_ ` ( x / n ) ) ) ) x. ( mmu ` n ) ) = ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) | 
						
							| 168 | 162 167 | eqtrd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) | 
						
							| 169 | 168 | sumeq2dv |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( mmu ` n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) | 
						
							| 170 | 148 159 169 | 3eqtr3rd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) = 1 ) | 
						
							| 171 | 170 | oveq2d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( |_ ` ( x / n ) ) x. ( mmu ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) ) | 
						
							| 172 | 126 141 171 | 3eqtr3d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( mmu ` n ) / n ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) ) | 
						
							| 173 | 123 172 | eqtrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) ) | 
						
							| 174 | 173 | oveq1d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) / x ) ) | 
						
							| 175 | 120 32 33 | divcan3d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) | 
						
							| 176 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 177 | 176 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 178 |  | divdir |  |-  ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) e. CC /\ 1 e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) | 
						
							| 179 | 31 81 177 178 | syl3anc |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) + 1 ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) | 
						
							| 180 | 174 175 179 | 3eqtr3d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) | 
						
							| 181 | 180 | fveq2d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) | 
						
							| 182 | 121 181 | eqled |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) | 
						
							| 183 | 182 | adantl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( x / n ) - ( |_ ` ( x / n ) ) ) x. ( mmu ` n ) ) / x ) + ( 1 / x ) ) ) ) | 
						
							| 184 | 1 113 114 119 183 | o1le |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) ) | 
						
							| 185 | 184 | mptru |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) |