| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 2 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 3 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 4 | 2 3 | ssexi | ⊢ ℝ+  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( ⊤  →  ℝ+  ∈  V ) | 
						
							| 6 |  | fzfid | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 7 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 8 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 9 |  | nndivre | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℂ ) | 
						
							| 12 |  | reflcl | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 15 | 11 14 | subcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 16 | 8 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 17 |  | mucl | ⊢ ( 𝑛  ∈  ℕ  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 19 | 18 | zcnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 20 | 15 19 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 21 | 6 20 | fsumcl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 22 |  | rpcn | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℂ ) | 
						
							| 23 |  | rpne0 | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≠  0 ) | 
						
							| 24 | 21 22 23 | divcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 26 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  V ) | 
						
							| 27 |  | eqidd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) ) ) | 
						
							| 28 |  | eqidd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) ) ) | 
						
							| 29 | 5 25 26 27 28 | offval2 | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ∘f   +  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) ) | 
						
							| 30 | 3 | a1i | ⊢ ( ⊤  →  ℝ+  ⊆  ℝ ) | 
						
							| 31 | 21 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 32 | 22 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  𝑥  ∈  ℂ ) | 
						
							| 33 | 23 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  𝑥  ≠  0 ) | 
						
							| 34 | 31 32 33 | absdivd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  /  ( abs ‘ 𝑥 ) ) ) | 
						
							| 35 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 36 |  | absid | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( abs ‘ 𝑥 )  =  𝑥 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( abs ‘ 𝑥 )  =  𝑥 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ 𝑥 )  =  𝑥 ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  /  ( abs ‘ 𝑥 ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  /  𝑥 ) ) | 
						
							| 40 | 34 39 | eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  /  𝑥 ) ) | 
						
							| 41 | 31 | abscld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 42 |  | fzfid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 43 | 20 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 44 | 43 | abscld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 45 | 42 44 | fsumrecl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 46 | 7 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 47 | 42 43 | fsumabs | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) ) ) | 
						
							| 48 |  | reflcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 49 | 46 48 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 50 |  | 1red | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 51 | 15 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 52 |  | fz1ssnn | ⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ ) | 
						
							| 54 | 53 | sselda | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 55 | 54 17 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 56 | 55 | zcnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 57 | 51 56 | absmuld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  =  ( ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ·  ( abs ‘ ( μ ‘ 𝑛 ) ) ) ) | 
						
							| 58 | 51 | abscld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 59 | 56 | abscld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 60 | 51 | absge0d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 61 | 56 | absge0d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( μ ‘ 𝑛 ) ) ) | 
						
							| 62 |  | simpl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  𝑥  ∈  ℝ+ ) | 
						
							| 63 | 8 | nnrpd | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 64 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 65 | 62 63 64 | syl2an | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 66 | 3 65 | sselid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 67 | 66 12 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 68 |  | flle | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 69 | 66 68 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 70 | 67 66 69 | abssubge0d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 71 |  | fracle1 | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ≤  1 ) | 
						
							| 72 | 66 71 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ≤  1 ) | 
						
							| 73 | 70 72 | eqbrtrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  1 ) | 
						
							| 74 |  | mule1 | ⊢ ( 𝑛  ∈  ℕ  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ≤  1 ) | 
						
							| 75 | 54 74 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ≤  1 ) | 
						
							| 76 | 58 50 59 50 60 61 73 75 | lemul12ad | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ·  ( abs ‘ ( μ ‘ 𝑛 ) ) )  ≤  ( 1  ·  1 ) ) | 
						
							| 77 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 78 | 76 77 | breqtrdi | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ·  ( abs ‘ ( μ ‘ 𝑛 ) ) )  ≤  1 ) | 
						
							| 79 | 57 78 | eqbrtrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  1 ) | 
						
							| 80 | 42 44 50 79 | fsumle | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1 ) | 
						
							| 81 |  | 1cnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  1  ∈  ℂ ) | 
						
							| 82 |  | fsumconst | ⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin  ∧  1  ∈  ℂ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  1 ) ) | 
						
							| 83 | 42 81 82 | syl2anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  1 ) ) | 
						
							| 84 |  | flge1nn | ⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 85 | 7 84 | sylan | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 86 | 85 | nnnn0d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 87 |  | hashfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 88 | 86 87 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  1 )  =  ( ( ⌊ ‘ 𝑥 )  ·  1 ) ) | 
						
							| 90 | 49 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 91 | 90 | mulridd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( ⌊ ‘ 𝑥 )  ·  1 )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 92 | 83 89 91 | 3eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 93 | 80 92 | breqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 94 |  | flle | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 95 | 46 94 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 96 | 45 49 46 93 95 | letrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 97 | 41 45 46 47 96 | letrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 98 | 32 | mulridd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 𝑥  ·  1 )  =  𝑥 ) | 
						
							| 99 | 97 98 | breqtrrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  ( 𝑥  ·  1 ) ) | 
						
							| 100 |  | 1red | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  1  ∈  ℝ ) | 
						
							| 101 | 41 100 62 | ledivmuld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  /  𝑥 )  ≤  1  ↔  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  ≤  ( 𝑥  ·  1 ) ) ) | 
						
							| 102 | 99 101 | mpbird | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) ) )  /  𝑥 )  ≤  1 ) | 
						
							| 103 | 40 102 | eqbrtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ≤  1 ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ≤  1 ) | 
						
							| 105 | 30 25 1 1 104 | elo1d | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 106 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 107 |  | divrcnv | ⊢ ( 1  ∈  ℂ  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ⇝𝑟  0 ) | 
						
							| 108 | 106 107 | ax-mp | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ⇝𝑟  0 | 
						
							| 109 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ⇝𝑟  0  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 110 | 108 109 | mp1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 111 |  | o1add | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ∈  𝑂(1)  ∧  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ∈  𝑂(1) )  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ∘f   +  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 112 | 105 110 111 | syl2anc | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 ) )  ∘f   +  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 113 | 29 112 | eqeltrrd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 114 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) )  ∈  V ) | 
						
							| 115 | 18 | zred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 116 | 115 16 | nndivred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 117 | 116 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 118 | 6 117 | fsumcl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 120 | 118 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 121 | 120 | abscld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 122 | 117 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 123 | 42 32 122 | fsummulc2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 124 | 14 19 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 125 | 124 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 126 | 42 43 125 | fsumadd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) ) ) | 
						
							| 127 | 11 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℂ ) | 
						
							| 128 | 14 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 129 | 127 128 | npcand | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  =  ( 𝑥  /  𝑛 ) ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  =  ( ( 𝑥  /  𝑛 )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 131 | 51 128 56 | adddird | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  =  ( ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) ) ) | 
						
							| 132 | 32 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 133 | 54 | nnrpd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 134 |  | rpcnne0 | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 135 | 133 134 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 136 |  | div23 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( 𝑥  ·  ( μ ‘ 𝑛 ) )  /  𝑛 )  =  ( ( 𝑥  /  𝑛 )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 137 |  | divass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( 𝑥  ·  ( μ ‘ 𝑛 ) )  /  𝑛 )  =  ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 138 | 136 137 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( 𝑥  /  𝑛 )  ·  ( μ ‘ 𝑛 ) )  =  ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 139 | 132 56 135 138 | syl3anc | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑥  /  𝑛 )  ·  ( μ ‘ 𝑛 ) )  =  ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 140 | 130 131 139 | 3eqtr3d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) )  =  ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 141 | 140 | sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 142 |  | eqidd | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( μ ‘ 𝑛 )  =  ( μ ‘ 𝑛 ) ) | 
						
							| 143 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ℕ | 
						
							| 144 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 145 | 143 144 | sselid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  ℕ ) | 
						
							| 146 | 145 17 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 147 | 146 | zcnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 148 | 142 46 147 | dvdsflsumcom | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( μ ‘ 𝑛 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( μ ‘ 𝑛 ) ) | 
						
							| 149 | 147 | 3impb | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 150 | 149 | mulridd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  ( ( μ ‘ 𝑛 )  ·  1 )  =  ( μ ‘ 𝑛 ) ) | 
						
							| 151 | 150 | 2sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  1 )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( μ ‘ 𝑛 ) ) | 
						
							| 152 |  | eqidd | ⊢ ( 𝑘  =  1  →  1  =  1 ) | 
						
							| 153 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 154 | 85 153 | eleqtrdi | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 155 |  | eluzfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 156 | 154 155 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  1  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 157 |  | 1cnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℂ ) | 
						
							| 158 | 152 42 53 156 157 | musumsum | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  1 )  =  1 ) | 
						
							| 159 | 151 158 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( μ ‘ 𝑛 )  =  1 ) | 
						
							| 160 |  | fzfid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 161 |  | fsumconst | ⊢ ( ( ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin  ∧  ( μ ‘ 𝑛 )  ∈  ℂ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( μ ‘ 𝑛 )  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 162 | 160 56 161 | syl2anc | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( μ ‘ 𝑛 )  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 163 |  | rprege0 | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ+  →  ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  0  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 164 |  | flge0nn0 | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  0  ≤  ( 𝑥  /  𝑛 ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℕ0 ) | 
						
							| 165 |  | hashfz1 | ⊢ ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 166 | 65 163 164 165 | 4syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 167 | 166 | oveq1d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  ·  ( μ ‘ 𝑛 ) )  =  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 168 | 162 167 | eqtrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( μ ‘ 𝑛 )  =  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 169 | 168 | sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( μ ‘ 𝑛 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) ) | 
						
							| 170 | 148 159 169 | 3eqtr3rd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) )  =  1 ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ·  ( μ ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  1 ) ) | 
						
							| 172 | 126 141 171 | 3eqtr3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥  ·  ( ( μ ‘ 𝑛 )  /  𝑛 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  1 ) ) | 
						
							| 173 | 123 172 | eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  1 ) ) | 
						
							| 174 | 173 | oveq1d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  /  𝑥 )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  1 )  /  𝑥 ) ) | 
						
							| 175 | 120 32 33 | divcan3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  /  𝑥 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 176 |  | rpcnne0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 177 | 176 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 178 |  | divdir | ⊢ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  1 )  /  𝑥 )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) | 
						
							| 179 | 31 81 177 178 | syl3anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  +  1 )  /  𝑥 )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) | 
						
							| 180 | 174 175 179 | 3eqtr3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) | 
						
							| 181 | 180 | fveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  =  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) ) | 
						
							| 182 | 121 181 | eqled | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) ) | 
						
							| 183 | 182 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥  /  𝑛 )  −  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( μ ‘ 𝑛 ) )  /  𝑥 )  +  ( 1  /  𝑥 ) ) ) ) | 
						
							| 184 | 1 113 114 119 183 | o1le | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ∈  𝑂(1) ) | 
						
							| 185 | 184 | mptru | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ∈  𝑂(1) |