| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 2 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 4 |  | mucl | ⊢ ( 𝑛  ∈  ℕ  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 6 | 5 | zred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 7 | 6 3 | nndivred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 9 | 1 8 | fsumcl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 11 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 12 | 11 | recni | ⊢ γ  ∈  ℂ | 
						
							| 13 | 12 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  γ  ∈  ℂ ) | 
						
							| 14 |  | mudivsum | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ∈  𝑂(1) | 
						
							| 15 | 14 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ∈  𝑂(1) ) | 
						
							| 16 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 17 |  | o1const | ⊢ ( ( ℝ+  ⊆  ℝ  ∧  γ  ∈  ℂ )  →  ( 𝑥  ∈  ℝ+  ↦  γ )  ∈  𝑂(1) ) | 
						
							| 18 | 16 12 17 | mp2an | ⊢ ( 𝑥  ∈  ℝ+  ↦  γ )  ∈  𝑂(1) | 
						
							| 19 | 18 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  γ )  ∈  𝑂(1) ) | 
						
							| 20 | 10 13 15 19 | o1mul2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) )  ∈  𝑂(1) ) | 
						
							| 21 |  | fzfid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 22 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 24 | 23 | nnrecred | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 25 | 21 24 | fsumrecl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 26 | 2 | nnrpd | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 27 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 28 | 26 27 | sylan2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 29 | 28 | relogcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 30 | 25 29 | resubcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 31 | 7 30 | remulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 32 | 1 31 | fsumrecl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 33 | 32 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 35 |  | mulcl | ⊢ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ  ∧  γ  ∈  ℂ )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ )  ∈  ℂ ) | 
						
							| 36 | 9 12 35 | sylancl | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ )  ∈  ℂ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ )  ∈  ℂ ) | 
						
							| 38 |  | nnrecre | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 40 | 23 39 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 41 | 21 40 | fsumcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 42 | 29 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 43 | 41 42 | subcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 44 | 8 43 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 45 |  | mulcl | ⊢ ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ  ∧  γ  ∈  ℂ )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ )  ∈  ℂ ) | 
						
							| 46 | 8 12 45 | sylancl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ )  ∈  ℂ ) | 
						
							| 47 | 1 44 46 | fsumsub | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 48 | 12 | a1i | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  γ  ∈  ℂ ) | 
						
							| 49 | 41 42 48 | subsub4d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  γ )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  γ ) )  =  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) ) | 
						
							| 51 | 8 43 48 | subdid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  γ ) )  =  ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 52 | 50 51 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  =  ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 53 | 52 | sumeq2dv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 54 | 12 | a1i | ⊢ ( 𝑥  ∈  ℝ+  →  γ  ∈  ℂ ) | 
						
							| 55 | 1 54 8 | fsummulc1 | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 57 | 47 53 56 | 3eqtr4d | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 58 | 57 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) ) | 
						
							| 59 | 16 | a1i | ⊢ ( ⊤  →  ℝ+  ⊆  ℝ ) | 
						
							| 60 | 42 48 | addcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ )  ∈  ℂ ) | 
						
							| 61 | 41 60 | subcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) )  ∈  ℂ ) | 
						
							| 62 | 8 61 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ∈  ℂ ) | 
						
							| 63 | 1 62 | fsumcl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ∈  ℂ ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ∈  ℂ ) | 
						
							| 65 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 66 | 63 | abscld | ⊢ ( 𝑥  ∈  ℝ+  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ∈  ℝ ) | 
						
							| 67 | 62 | abscld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ∈  ℝ ) | 
						
							| 68 | 1 67 | fsumrecl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ∈  ℝ ) | 
						
							| 69 |  | 1red | ⊢ ( 𝑥  ∈  ℝ+  →  1  ∈  ℝ ) | 
						
							| 70 | 1 62 | fsumabs | ⊢ ( 𝑥  ∈  ℝ+  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) ) ) | 
						
							| 71 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 72 |  | flge0nn0 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 74 | 73 | nn0red | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 75 |  | rerpdivcl | ⊢ ( ( ( ⌊ ‘ 𝑥 )  ∈  ℝ  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 76 | 74 75 | mpancom | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 77 |  | rpreccl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 79 | 78 | rpred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 80 | 8 | abscld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 81 | 3 | nnrecred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 82 | 61 | abscld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ∈  ℝ ) | 
						
							| 83 |  | id | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ+ ) | 
						
							| 84 |  | rpdivcl | ⊢ ( ( 𝑛  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑛  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 85 | 26 83 84 | syl2anr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 86 | 85 | rpred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  /  𝑥 )  ∈  ℝ ) | 
						
							| 87 | 8 | absge0d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 88 | 61 | absge0d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) ) | 
						
							| 89 | 6 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 90 | 3 | nncnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 91 | 3 | nnne0d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≠  0 ) | 
						
							| 92 | 89 90 91 | absdivd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) )  =  ( ( abs ‘ ( μ ‘ 𝑛 ) )  /  ( abs ‘ 𝑛 ) ) ) | 
						
							| 93 | 3 | nnrpd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 94 |  | rprege0 | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑛  ∈  ℝ  ∧  0  ≤  𝑛 ) ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  ∈  ℝ  ∧  0  ≤  𝑛 ) ) | 
						
							| 96 |  | absid | ⊢ ( ( 𝑛  ∈  ℝ  ∧  0  ≤  𝑛 )  →  ( abs ‘ 𝑛 )  =  𝑛 ) | 
						
							| 97 | 95 96 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ 𝑛 )  =  𝑛 ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( μ ‘ 𝑛 ) )  /  ( abs ‘ 𝑛 ) )  =  ( ( abs ‘ ( μ ‘ 𝑛 ) )  /  𝑛 ) ) | 
						
							| 99 | 92 98 | eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) )  =  ( ( abs ‘ ( μ ‘ 𝑛 ) )  /  𝑛 ) ) | 
						
							| 100 | 89 | abscld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 101 |  | 1red | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 102 |  | mule1 | ⊢ ( 𝑛  ∈  ℕ  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ≤  1 ) | 
						
							| 103 | 3 102 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ≤  1 ) | 
						
							| 104 | 100 101 93 103 | lediv1dd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( μ ‘ 𝑛 ) )  /  𝑛 )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 105 | 99 104 | eqbrtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 106 |  | harmonicbnd4 | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ+  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ≤  ( 1  /  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 107 | 28 106 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ≤  ( 1  /  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 108 |  | rpcnne0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 110 |  | rpcnne0 | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 111 | 93 110 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 112 |  | recdiv | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( 1  /  ( 𝑥  /  𝑛 ) )  =  ( 𝑛  /  𝑥 ) ) | 
						
							| 113 | 109 111 112 | syl2anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  ( 𝑥  /  𝑛 ) )  =  ( 𝑛  /  𝑥 ) ) | 
						
							| 114 | 107 113 | breqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) )  ≤  ( 𝑛  /  𝑥 ) ) | 
						
							| 115 | 80 81 82 86 87 88 105 114 | lemul12ad | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  ( ( 1  /  𝑛 )  ·  ( 𝑛  /  𝑥 ) ) ) | 
						
							| 116 | 8 61 | absmuld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  =  ( ( abs ‘ ( ( μ ‘ 𝑛 )  /  𝑛 ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) ) ) | 
						
							| 117 |  | 1cnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℂ ) | 
						
							| 118 |  | dmdcan | ⊢ ( ( ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  1  ∈  ℂ )  →  ( ( 𝑛  /  𝑥 )  ·  ( 1  /  𝑛 ) )  =  ( 1  /  𝑥 ) ) | 
						
							| 119 | 111 109 117 118 | syl3anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑛  /  𝑥 )  ·  ( 1  /  𝑛 ) )  =  ( 1  /  𝑥 ) ) | 
						
							| 120 | 85 | rpcnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  /  𝑥 )  ∈  ℂ ) | 
						
							| 121 | 81 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑛 )  ∈  ℂ ) | 
						
							| 122 | 120 121 | mulcomd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑛  /  𝑥 )  ·  ( 1  /  𝑛 ) )  =  ( ( 1  /  𝑛 )  ·  ( 𝑛  /  𝑥 ) ) ) | 
						
							| 123 | 119 122 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑥 )  =  ( ( 1  /  𝑛 )  ·  ( 𝑛  /  𝑥 ) ) ) | 
						
							| 124 | 115 116 123 | 3brtr4d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  ( 1  /  𝑥 ) ) | 
						
							| 125 | 1 67 79 124 | fsumle | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 ) ) | 
						
							| 126 |  | hashfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 127 | 73 126 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 128 | 127 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  ( 1  /  𝑥 ) )  =  ( ( ⌊ ‘ 𝑥 )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 129 | 77 | rpcnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℂ ) | 
						
							| 130 |  | fsumconst | ⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin  ∧  ( 1  /  𝑥 )  ∈  ℂ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 )  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 131 | 1 129 130 | syl2anc | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 )  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 132 | 73 | nn0cnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 133 |  | rpcn | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℂ ) | 
						
							| 134 |  | rpne0 | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≠  0 ) | 
						
							| 135 | 132 133 134 | divrecd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  =  ( ( ⌊ ‘ 𝑥 )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 136 | 128 131 135 | 3eqtr4d | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 )  =  ( ( ⌊ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 137 | 125 136 | breqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  ( ( ⌊ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 138 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 139 |  | flle | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 140 | 138 139 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 141 | 133 | mulridd | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ·  1 )  =  𝑥 ) | 
						
							| 142 | 140 141 | breqtrrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ≤  ( 𝑥  ·  1 ) ) | 
						
							| 143 |  | reflcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 144 | 138 143 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 145 |  | rpregt0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 146 |  | ledivmul | ⊢ ( ( ( ⌊ ‘ 𝑥 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  ( ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ≤  1  ↔  ( ⌊ ‘ 𝑥 )  ≤  ( 𝑥  ·  1 ) ) ) | 
						
							| 147 | 144 69 145 146 | syl3anc | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ≤  1  ↔  ( ⌊ ‘ 𝑥 )  ≤  ( 𝑥  ·  1 ) ) ) | 
						
							| 148 | 142 147 | mpbird | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ≤  1 ) | 
						
							| 149 | 68 76 69 137 148 | letrd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  1 ) | 
						
							| 150 | 66 68 69 70 149 | letrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  1 ) | 
						
							| 151 | 150 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ≤  1 ) | 
						
							| 152 | 59 64 65 65 151 | elo1d | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( ( log ‘ ( 𝑥  /  𝑛 ) )  +  γ ) ) ) )  ∈  𝑂(1) ) | 
						
							| 153 | 58 152 | eqeltrrid | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) ) )  ∈  𝑂(1) ) | 
						
							| 154 | 34 37 153 | o1dif | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  γ ) )  ∈  𝑂(1) ) ) | 
						
							| 155 | 20 154 | mpbird | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1) ) | 
						
							| 156 | 155 | mptru | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1) |