| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 2 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 4 | 3 | nnrecred | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 5 | 1 4 | fsumrecl | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 7 |  | relogcl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  ∈  ℝ+  →  γ  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  γ  ∈  ℂ ) | 
						
							| 12 | 6 8 11 | subsub4d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  γ )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝐴  ∈  ℝ+  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  γ ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) | 
						
							| 14 |  | rpreccl | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | rpred | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 16 |  | resubcl | ⊢ ( ( γ  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ )  →  ( γ  −  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 17 | 9 15 16 | sylancr | ⊢ ( 𝐴  ∈  ℝ+  →  ( γ  −  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 18 |  | rprege0 | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 19 |  | flge0nn0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ⌊ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( ⌊ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 21 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝐴 )  ∈  ℕ0  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℕ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℕ ) | 
						
							| 23 | 22 | nnrpd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ+ ) | 
						
							| 24 |  | relogcl | ⊢ ( ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ∈  ℝ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ∈  ℝ ) | 
						
							| 26 | 5 25 | resubcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 27 | 5 7 | resubcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 28 | 22 | nnrecred | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ∈  ℝ ) | 
						
							| 29 |  | fzfid | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ∈  Fin ) | 
						
							| 30 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 32 | 31 | nnrecred | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 33 | 29 32 | fsumrecl | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 34 | 33 25 | resubcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 35 |  | harmonicbnd | ⊢ ( ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℕ  →  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( γ [,] 1 ) ) | 
						
							| 36 | 22 35 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( γ [,] 1 ) ) | 
						
							| 37 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 38 | 9 37 | elicc2i | ⊢ ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( γ [,] 1 )  ↔  ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ℝ  ∧  γ  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∧  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ≤  1 ) ) | 
						
							| 39 | 38 | simp2bi | ⊢ ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( γ [,] 1 )  →  γ  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 40 | 36 39 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  γ  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 41 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 42 |  | fllep1 | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 44 |  | rpregt0 | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 45 | 22 | nnred | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 46 | 22 | nngt0d | ⊢ ( 𝐴  ∈  ℝ+  →  0  <  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 47 |  | lerec | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ  ∧  0  <  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  →  ( 𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 )  ↔  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 48 | 44 45 46 47 | syl12anc | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 )  ↔  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 49 | 43 48 | mpbid | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ≤  ( 1  /  𝐴 ) ) | 
						
							| 50 | 10 28 34 15 40 49 | le2subd | ⊢ ( 𝐴  ∈  ℝ+  →  ( γ  −  ( 1  /  𝐴 ) )  ≤  ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  −  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 51 | 33 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 52 | 25 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ∈  ℂ ) | 
						
							| 53 | 28 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ∈  ℂ ) | 
						
							| 54 | 51 52 53 | sub32d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  −  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 55 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 56 | 22 55 | eleqtrdi | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 57 | 32 | recnd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑚  =  ( ( ⌊ ‘ 𝐴 )  +  1 )  →  ( 1  /  𝑚 )  =  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 59 | 56 57 58 | fsumm1 | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ( ( ⌊ ‘ 𝐴 )  +  1 )  −  1 ) ) ( 1  /  𝑚 )  +  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 60 | 20 | nn0cnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ⌊ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 61 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 62 |  | pncan | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  −  1 )  =  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 63 | 60 61 62 | sylancl | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  −  1 )  =  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1 ... ( ( ( ⌊ ‘ 𝐴 )  +  1 )  −  1 ) )  =  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 65 | 64 | sumeq1d | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ( ( ⌊ ‘ 𝐴 )  +  1 )  −  1 ) ) ( 1  /  𝑚 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ( ( ⌊ ‘ 𝐴 )  +  1 )  −  1 ) ) ( 1  /  𝑚 )  +  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  +  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 67 | 59 66 | eqtrd | ⊢ ( 𝐴  ∈  ℝ+  →  Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  +  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 68 | 6 53 67 | mvrraddd | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 70 | 54 69 | eqtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  −  ( 1  /  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 71 | 50 70 | breqtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( γ  −  ( 1  /  𝐴 ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 72 |  | logleb | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ+ )  →  ( 𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 )  ↔  ( log ‘ 𝐴 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 73 | 23 72 | mpdan | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 )  ↔  ( log ‘ 𝐴 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 74 | 43 73 | mpbid | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 75 | 7 25 5 74 | lesub2dd | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 76 | 17 26 27 71 75 | letrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( γ  −  ( 1  /  𝐴 ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 77 | 27 15 | resubcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 78 | 15 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 79 | 6 8 78 | subsub4d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  ( 1  /  𝐴 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 80 | 7 15 | readdcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( log ‘ 𝐴 )  +  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 81 |  | id | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ+ ) | 
						
							| 82 | 23 81 | relogdivd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 ) )  =  ( ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 83 |  | rerpdivcl | ⊢ ( ( ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ∈  ℝ ) | 
						
							| 84 | 45 83 | mpancom | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ∈  ℝ ) | 
						
							| 85 | 37 | a1i | ⊢ ( 𝐴  ∈  ℝ+  →  1  ∈  ℝ ) | 
						
							| 86 | 85 15 | readdcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  +  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 87 | 15 | reefcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( exp ‘ ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 88 | 61 | a1i | ⊢ ( 𝐴  ∈  ℝ+  →  1  ∈  ℂ ) | 
						
							| 89 |  | rpcnne0 | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 90 |  | divdir | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  =  ( ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  +  ( 1  /  𝐴 ) ) ) | 
						
							| 91 | 60 88 89 90 | syl3anc | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  =  ( ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  +  ( 1  /  𝐴 ) ) ) | 
						
							| 92 |  | reflcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 93 | 41 92 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( ⌊ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 94 |  | rerpdivcl | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  ∈  ℝ ) | 
						
							| 95 | 93 94 | mpancom | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  ∈  ℝ ) | 
						
							| 96 |  | flle | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) | 
						
							| 97 | 41 96 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) | 
						
							| 98 |  | rpcn | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ ) | 
						
							| 99 | 98 | mulridd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 100 | 97 99 | breqtrrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ⌊ ‘ 𝐴 )  ≤  ( 𝐴  ·  1 ) ) | 
						
							| 101 |  | ledivmul | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  ≤  1  ↔  ( ⌊ ‘ 𝐴 )  ≤  ( 𝐴  ·  1 ) ) ) | 
						
							| 102 | 93 85 44 101 | syl3anc | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  ≤  1  ↔  ( ⌊ ‘ 𝐴 )  ≤  ( 𝐴  ·  1 ) ) ) | 
						
							| 103 | 100 102 | mpbird | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  ≤  1 ) | 
						
							| 104 | 95 85 15 103 | leadd1dd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  /  𝐴 )  +  ( 1  /  𝐴 ) )  ≤  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 105 | 91 104 | eqbrtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ≤  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 106 |  | efgt1p | ⊢ ( ( 1  /  𝐴 )  ∈  ℝ+  →  ( 1  +  ( 1  /  𝐴 ) )  <  ( exp ‘ ( 1  /  𝐴 ) ) ) | 
						
							| 107 | 14 106 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  +  ( 1  /  𝐴 ) )  <  ( exp ‘ ( 1  /  𝐴 ) ) ) | 
						
							| 108 | 86 87 107 | ltled | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  +  ( 1  /  𝐴 ) )  ≤  ( exp ‘ ( 1  /  𝐴 ) ) ) | 
						
							| 109 | 84 86 87 105 108 | letrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ≤  ( exp ‘ ( 1  /  𝐴 ) ) ) | 
						
							| 110 |  | rpdivcl | ⊢ ( ( ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ+  ∧  𝐴  ∈  ℝ+ )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 111 | 23 110 | mpancom | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 112 | 15 | rpefcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( exp ‘ ( 1  /  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 113 | 111 112 | logled | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 )  ≤  ( exp ‘ ( 1  /  𝐴 ) )  ↔  ( log ‘ ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 ) )  ≤  ( log ‘ ( exp ‘ ( 1  /  𝐴 ) ) ) ) ) | 
						
							| 114 | 109 113 | mpbid | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 ) )  ≤  ( log ‘ ( exp ‘ ( 1  /  𝐴 ) ) ) ) | 
						
							| 115 | 15 | relogefd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( exp ‘ ( 1  /  𝐴 ) ) )  =  ( 1  /  𝐴 ) ) | 
						
							| 116 | 114 115 | breqtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( ( ⌊ ‘ 𝐴 )  +  1 )  /  𝐴 ) )  ≤  ( 1  /  𝐴 ) ) | 
						
							| 117 | 82 116 | eqbrtrrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  −  ( log ‘ 𝐴 ) )  ≤  ( 1  /  𝐴 ) ) | 
						
							| 118 | 25 7 15 | lesubadd2d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  −  ( log ‘ 𝐴 ) )  ≤  ( 1  /  𝐴 )  ↔  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ≤  ( ( log ‘ 𝐴 )  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 119 | 117 118 | mpbid | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) )  ≤  ( ( log ‘ 𝐴 )  +  ( 1  /  𝐴 ) ) ) | 
						
							| 120 | 25 80 5 119 | lesub2dd | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  ( 1  /  𝐴 ) ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 121 | 79 120 | eqbrtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  ( 1  /  𝐴 ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 122 |  | harmonicbnd3 | ⊢ ( ( ⌊ ‘ 𝐴 )  ∈  ℕ0  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 123 | 20 122 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 124 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 125 | 124 9 | elicc2i | ⊢ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( 0 [,] γ )  ↔  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ℝ  ∧  0  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∧  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ≤  γ ) ) | 
						
							| 126 | 125 | simp3bi | ⊢ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ∈  ( 0 [,] γ )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ≤  γ ) | 
						
							| 127 | 123 126 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ ( ( ⌊ ‘ 𝐴 )  +  1 ) ) )  ≤  γ ) | 
						
							| 128 | 77 26 10 121 127 | letrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  ( 1  /  𝐴 ) )  ≤  γ ) | 
						
							| 129 | 27 15 10 | lesubaddd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  ( 1  /  𝐴 ) )  ≤  γ  ↔  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  ≤  ( γ  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 130 | 128 129 | mpbid | ⊢ ( 𝐴  ∈  ℝ+  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  ≤  ( γ  +  ( 1  /  𝐴 ) ) ) | 
						
							| 131 | 27 10 15 | absdifled | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  γ ) )  ≤  ( 1  /  𝐴 )  ↔  ( ( γ  −  ( 1  /  𝐴 ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  ∧  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  ≤  ( γ  +  ( 1  /  𝐴 ) ) ) ) ) | 
						
							| 132 | 76 130 131 | mpbir2and | ⊢ ( 𝐴  ∈  ℝ+  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( log ‘ 𝐴 ) )  −  γ ) )  ≤  ( 1  /  𝐴 ) ) | 
						
							| 133 | 13 132 | eqbrtrrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ≤  ( 1  /  𝐴 ) ) |