| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
|
emre |
⊢ γ ∈ ℝ |
| 4 |
|
2re |
⊢ 2 ∈ ℝ |
| 5 |
|
ere |
⊢ e ∈ ℝ |
| 6 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
| 7 |
6
|
simpli |
⊢ 2 < e |
| 8 |
4 5 7
|
ltleii |
⊢ 2 ≤ e |
| 9 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 10 |
|
epr |
⊢ e ∈ ℝ+ |
| 11 |
|
logleb |
⊢ ( ( 2 ∈ ℝ+ ∧ e ∈ ℝ+ ) → ( 2 ≤ e ↔ ( log ‘ 2 ) ≤ ( log ‘ e ) ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( 2 ≤ e ↔ ( log ‘ 2 ) ≤ ( log ‘ e ) ) |
| 13 |
8 12
|
mpbi |
⊢ ( log ‘ 2 ) ≤ ( log ‘ e ) |
| 14 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 15 |
13 14
|
breqtri |
⊢ ( log ‘ 2 ) ≤ 1 |
| 16 |
|
1re |
⊢ 1 ∈ ℝ |
| 17 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
| 18 |
9 17
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
| 19 |
16 18
|
subge0i |
⊢ ( 0 ≤ ( 1 − ( log ‘ 2 ) ) ↔ ( log ‘ 2 ) ≤ 1 ) |
| 20 |
15 19
|
mpbir |
⊢ 0 ≤ ( 1 − ( log ‘ 2 ) ) |
| 21 |
3
|
leidi |
⊢ γ ≤ γ |
| 22 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ γ ∈ ℝ ) ∧ ( 0 ≤ ( 1 − ( log ‘ 2 ) ) ∧ γ ≤ γ ) ) → ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ⊆ ( 0 [,] γ ) ) |
| 23 |
2 3 20 21 22
|
mp4an |
⊢ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ⊆ ( 0 [,] γ ) |
| 24 |
|
harmonicbnd2 |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 25 |
23 24
|
sselid |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) |
| 27 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 28 |
26 27
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
| 29 |
28
|
sumeq1d |
⊢ ( 𝑁 = 0 → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ∅ ( 1 / 𝑚 ) ) |
| 30 |
|
sum0 |
⊢ Σ 𝑚 ∈ ∅ ( 1 / 𝑚 ) = 0 |
| 31 |
29 30
|
eqtrdi |
⊢ ( 𝑁 = 0 → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) = 0 ) |
| 32 |
|
fv0p1e1 |
⊢ ( 𝑁 = 0 → ( log ‘ ( 𝑁 + 1 ) ) = ( log ‘ 1 ) ) |
| 33 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 34 |
32 33
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( log ‘ ( 𝑁 + 1 ) ) = 0 ) |
| 35 |
31 34
|
oveq12d |
⊢ ( 𝑁 = 0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) = ( 0 − 0 ) ) |
| 36 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 37 |
35 36
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) = 0 ) |
| 38 |
2
|
leidi |
⊢ 0 ≤ 0 |
| 39 |
|
emgt0 |
⊢ 0 < γ |
| 40 |
2 3 39
|
ltleii |
⊢ 0 ≤ γ |
| 41 |
2 3
|
elicc2i |
⊢ ( 0 ∈ ( 0 [,] γ ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ γ ) ) |
| 42 |
2 38 40 41
|
mpbir3an |
⊢ 0 ∈ ( 0 [,] γ ) |
| 43 |
37 42
|
eqeltrdi |
⊢ ( 𝑁 = 0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 44 |
25 43
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 45 |
1 44
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |