Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | harmonicbnd3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | 0re | |
|
3 | emre | |
|
4 | 2re | |
|
5 | ere | |
|
6 | egt2lt3 | |
|
7 | 6 | simpli | |
8 | 4 5 7 | ltleii | |
9 | 2rp | |
|
10 | epr | |
|
11 | logleb | |
|
12 | 9 10 11 | mp2an | |
13 | 8 12 | mpbi | |
14 | loge | |
|
15 | 13 14 | breqtri | |
16 | 1re | |
|
17 | relogcl | |
|
18 | 9 17 | ax-mp | |
19 | 16 18 | subge0i | |
20 | 15 19 | mpbir | |
21 | 3 | leidi | |
22 | iccss | |
|
23 | 2 3 20 21 22 | mp4an | |
24 | harmonicbnd2 | |
|
25 | 23 24 | sselid | |
26 | oveq2 | |
|
27 | fz10 | |
|
28 | 26 27 | eqtrdi | |
29 | 28 | sumeq1d | |
30 | sum0 | |
|
31 | 29 30 | eqtrdi | |
32 | fv0p1e1 | |
|
33 | log1 | |
|
34 | 32 33 | eqtrdi | |
35 | 31 34 | oveq12d | |
36 | 0m0e0 | |
|
37 | 35 36 | eqtrdi | |
38 | 2 | leidi | |
39 | emgt0 | |
|
40 | 2 3 39 | ltleii | |
41 | 2 3 | elicc2i | |
42 | 2 38 40 41 | mpbir3an | |
43 | 37 42 | eqeltrdi | |
44 | 25 43 | jaoi | |
45 | 1 44 | sylbi | |