Metamath Proof Explorer


Theorem harmonicbnd3

Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion harmonicbnd3 N0m=1N1mlogN+10γ

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 0re 0
3 emre γ
4 2re 2
5 ere e
6 egt2lt3 2<ee<3
7 6 simpli 2<e
8 4 5 7 ltleii 2e
9 2rp 2+
10 epr e+
11 logleb 2+e+2elog2loge
12 9 10 11 mp2an 2elog2loge
13 8 12 mpbi log2loge
14 loge loge=1
15 13 14 breqtri log21
16 1re 1
17 relogcl 2+log2
18 9 17 ax-mp log2
19 16 18 subge0i 01log2log21
20 15 19 mpbir 01log2
21 3 leidi γγ
22 iccss 0γ01log2γγ1log2γ0γ
23 2 3 20 21 22 mp4an 1log2γ0γ
24 harmonicbnd2 Nm=1N1mlogN+11log2γ
25 23 24 sselid Nm=1N1mlogN+10γ
26 oveq2 N=01N=10
27 fz10 10=
28 26 27 eqtrdi N=01N=
29 28 sumeq1d N=0m=1N1m=m1m
30 sum0 m1m=0
31 29 30 eqtrdi N=0m=1N1m=0
32 fv0p1e1 N=0logN+1=log1
33 log1 log1=0
34 32 33 eqtrdi N=0logN+1=0
35 31 34 oveq12d N=0m=1N1mlogN+1=00
36 0m0e0 00=0
37 35 36 eqtrdi N=0m=1N1mlogN+1=0
38 2 leidi 00
39 emgt0 0<γ
40 2 3 39 ltleii 0γ
41 2 3 elicc2i 00γ0000γ
42 2 38 40 41 mpbir3an 00γ
43 37 42 eqeltrdi N=0m=1N1mlogN+10γ
44 25 43 jaoi NN=0m=1N1mlogN+10γ
45 1 44 sylbi N0m=1N1mlogN+10γ