| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 2 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 3 | 2 | adantl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 4 |  | mucl |  |-  ( n e. NN -> ( mmu ` n ) e. ZZ ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 6 | 5 | zred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 7 | 6 3 | nndivred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 9 | 1 8 | fsumcl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 10 | 9 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 11 |  | emre |  |-  gamma e. RR | 
						
							| 12 | 11 | recni |  |-  gamma e. CC | 
						
							| 13 | 12 | a1i |  |-  ( ( T. /\ x e. RR+ ) -> gamma e. CC ) | 
						
							| 14 |  | mudivsum |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) | 
						
							| 15 | 14 | a1i |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) ) | 
						
							| 16 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 17 |  | o1const |  |-  ( ( RR+ C_ RR /\ gamma e. CC ) -> ( x e. RR+ |-> gamma ) e. O(1) ) | 
						
							| 18 | 16 12 17 | mp2an |  |-  ( x e. RR+ |-> gamma ) e. O(1) | 
						
							| 19 | 18 | a1i |  |-  ( T. -> ( x e. RR+ |-> gamma ) e. O(1) ) | 
						
							| 20 | 10 13 15 19 | o1mul2 |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) e. O(1) ) | 
						
							| 21 |  | fzfid |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 22 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) | 
						
							| 24 | 23 | nnrecred |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. RR ) | 
						
							| 25 | 21 24 | fsumrecl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. RR ) | 
						
							| 26 | 2 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 27 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 28 | 26 27 | sylan2 |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 29 | 28 | relogcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 30 | 25 29 | resubcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 31 | 7 30 | remulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 32 | 1 31 | fsumrecl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 34 | 33 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 35 |  | mulcl |  |-  ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC /\ gamma e. CC ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) e. CC ) | 
						
							| 36 | 9 12 35 | sylancl |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) e. CC ) | 
						
							| 37 | 36 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) e. CC ) | 
						
							| 38 |  | nnrecre |  |-  ( m e. NN -> ( 1 / m ) e. RR ) | 
						
							| 39 | 38 | recnd |  |-  ( m e. NN -> ( 1 / m ) e. CC ) | 
						
							| 40 | 23 39 | syl |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. CC ) | 
						
							| 41 | 21 40 | fsumcl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. CC ) | 
						
							| 42 | 29 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) | 
						
							| 43 | 41 42 | subcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 44 | 8 43 | mulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 45 |  | mulcl |  |-  ( ( ( ( mmu ` n ) / n ) e. CC /\ gamma e. CC ) -> ( ( ( mmu ` n ) / n ) x. gamma ) e. CC ) | 
						
							| 46 | 8 12 45 | sylancl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. gamma ) e. CC ) | 
						
							| 47 | 1 44 46 | fsumsub |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 48 | 12 | a1i |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> gamma e. CC ) | 
						
							| 49 | 41 42 48 | subsub4d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) - gamma ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) - gamma ) ) = ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) | 
						
							| 51 | 8 43 48 | subdid |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) - gamma ) ) = ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 52 | 50 51 | eqtr3d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) = ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 53 | 52 | sumeq2dv |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 54 | 12 | a1i |  |-  ( x e. RR+ -> gamma e. CC ) | 
						
							| 55 | 1 54 8 | fsummulc1 |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. gamma ) ) | 
						
							| 56 | 55 | oveq2d |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 57 | 47 53 56 | 3eqtr4d |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 58 | 57 | mpteq2ia |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) ) | 
						
							| 59 | 16 | a1i |  |-  ( T. -> RR+ C_ RR ) | 
						
							| 60 | 42 48 | addcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) + gamma ) e. CC ) | 
						
							| 61 | 41 60 | subcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) e. CC ) | 
						
							| 62 | 8 61 | mulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. CC ) | 
						
							| 63 | 1 62 | fsumcl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. CC ) | 
						
							| 64 | 63 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. CC ) | 
						
							| 65 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 66 | 63 | abscld |  |-  ( x e. RR+ -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. RR ) | 
						
							| 67 | 62 | abscld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. RR ) | 
						
							| 68 | 1 67 | fsumrecl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. RR ) | 
						
							| 69 |  | 1red |  |-  ( x e. RR+ -> 1 e. RR ) | 
						
							| 70 | 1 62 | fsumabs |  |-  ( x e. RR+ -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) ) | 
						
							| 71 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 72 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 73 | 71 72 | syl |  |-  ( x e. RR+ -> ( |_ ` x ) e. NN0 ) | 
						
							| 74 | 73 | nn0red |  |-  ( x e. RR+ -> ( |_ ` x ) e. RR ) | 
						
							| 75 |  | rerpdivcl |  |-  ( ( ( |_ ` x ) e. RR /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) e. RR ) | 
						
							| 76 | 74 75 | mpancom |  |-  ( x e. RR+ -> ( ( |_ ` x ) / x ) e. RR ) | 
						
							| 77 |  | rpreccl |  |-  ( x e. RR+ -> ( 1 / x ) e. RR+ ) | 
						
							| 78 | 77 | adantr |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) e. RR+ ) | 
						
							| 79 | 78 | rpred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) e. RR ) | 
						
							| 80 | 8 | abscld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) e. RR ) | 
						
							| 81 | 3 | nnrecred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 82 | 61 | abscld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. RR ) | 
						
							| 83 |  | id |  |-  ( x e. RR+ -> x e. RR+ ) | 
						
							| 84 |  | rpdivcl |  |-  ( ( n e. RR+ /\ x e. RR+ ) -> ( n / x ) e. RR+ ) | 
						
							| 85 | 26 83 84 | syl2anr |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n / x ) e. RR+ ) | 
						
							| 86 | 85 | rpred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n / x ) e. RR ) | 
						
							| 87 | 8 | absge0d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( mmu ` n ) / n ) ) ) | 
						
							| 88 | 61 | absge0d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) | 
						
							| 89 | 6 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 90 | 3 | nncnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 91 | 3 | nnne0d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 92 | 89 90 91 | absdivd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) = ( ( abs ` ( mmu ` n ) ) / ( abs ` n ) ) ) | 
						
							| 93 | 3 | nnrpd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 94 |  | rprege0 |  |-  ( n e. RR+ -> ( n e. RR /\ 0 <_ n ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. RR /\ 0 <_ n ) ) | 
						
							| 96 |  | absid |  |-  ( ( n e. RR /\ 0 <_ n ) -> ( abs ` n ) = n ) | 
						
							| 97 | 95 96 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` n ) = n ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) / ( abs ` n ) ) = ( ( abs ` ( mmu ` n ) ) / n ) ) | 
						
							| 99 | 92 98 | eqtrd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) = ( ( abs ` ( mmu ` n ) ) / n ) ) | 
						
							| 100 | 89 | abscld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) | 
						
							| 101 |  | 1red |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 102 |  | mule1 |  |-  ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) | 
						
							| 103 | 3 102 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) | 
						
							| 104 | 100 101 93 103 | lediv1dd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) / n ) <_ ( 1 / n ) ) | 
						
							| 105 | 99 104 | eqbrtrd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) <_ ( 1 / n ) ) | 
						
							| 106 |  | harmonicbnd4 |  |-  ( ( x / n ) e. RR+ -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) <_ ( 1 / ( x / n ) ) ) | 
						
							| 107 | 28 106 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) <_ ( 1 / ( x / n ) ) ) | 
						
							| 108 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 110 |  | rpcnne0 |  |-  ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 111 | 93 110 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 112 |  | recdiv |  |-  ( ( ( x e. CC /\ x =/= 0 ) /\ ( n e. CC /\ n =/= 0 ) ) -> ( 1 / ( x / n ) ) = ( n / x ) ) | 
						
							| 113 | 109 111 112 | syl2anc |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( x / n ) ) = ( n / x ) ) | 
						
							| 114 | 107 113 | breqtrd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) <_ ( n / x ) ) | 
						
							| 115 | 80 81 82 86 87 88 105 114 | lemul12ad |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( mmu ` n ) / n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ ( ( 1 / n ) x. ( n / x ) ) ) | 
						
							| 116 | 8 61 | absmuld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) = ( ( abs ` ( ( mmu ` n ) / n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) ) | 
						
							| 117 |  | 1cnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 118 |  | dmdcan |  |-  ( ( ( n e. CC /\ n =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ 1 e. CC ) -> ( ( n / x ) x. ( 1 / n ) ) = ( 1 / x ) ) | 
						
							| 119 | 111 109 117 118 | syl3anc |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n / x ) x. ( 1 / n ) ) = ( 1 / x ) ) | 
						
							| 120 | 85 | rpcnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n / x ) e. CC ) | 
						
							| 121 | 81 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 122 | 120 121 | mulcomd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n / x ) x. ( 1 / n ) ) = ( ( 1 / n ) x. ( n / x ) ) ) | 
						
							| 123 | 119 122 | eqtr3d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) = ( ( 1 / n ) x. ( n / x ) ) ) | 
						
							| 124 | 115 116 123 | 3brtr4d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ ( 1 / x ) ) | 
						
							| 125 | 1 67 79 124 | fsumle |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) ) | 
						
							| 126 |  | hashfz1 |  |-  ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) | 
						
							| 127 | 73 126 | syl |  |-  ( x e. RR+ -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) | 
						
							| 128 | 127 | oveq1d |  |-  ( x e. RR+ -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) | 
						
							| 129 | 77 | rpcnd |  |-  ( x e. RR+ -> ( 1 / x ) e. CC ) | 
						
							| 130 |  | fsumconst |  |-  ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( 1 / x ) e. CC ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) | 
						
							| 131 | 1 129 130 | syl2anc |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) | 
						
							| 132 | 73 | nn0cnd |  |-  ( x e. RR+ -> ( |_ ` x ) e. CC ) | 
						
							| 133 |  | rpcn |  |-  ( x e. RR+ -> x e. CC ) | 
						
							| 134 |  | rpne0 |  |-  ( x e. RR+ -> x =/= 0 ) | 
						
							| 135 | 132 133 134 | divrecd |  |-  ( x e. RR+ -> ( ( |_ ` x ) / x ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) | 
						
							| 136 | 128 131 135 | 3eqtr4d |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( |_ ` x ) / x ) ) | 
						
							| 137 | 125 136 | breqtrd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ ( ( |_ ` x ) / x ) ) | 
						
							| 138 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 139 |  | flle |  |-  ( x e. RR -> ( |_ ` x ) <_ x ) | 
						
							| 140 | 138 139 | syl |  |-  ( x e. RR+ -> ( |_ ` x ) <_ x ) | 
						
							| 141 | 133 | mulridd |  |-  ( x e. RR+ -> ( x x. 1 ) = x ) | 
						
							| 142 | 140 141 | breqtrrd |  |-  ( x e. RR+ -> ( |_ ` x ) <_ ( x x. 1 ) ) | 
						
							| 143 |  | reflcl |  |-  ( x e. RR -> ( |_ ` x ) e. RR ) | 
						
							| 144 | 138 143 | syl |  |-  ( x e. RR+ -> ( |_ ` x ) e. RR ) | 
						
							| 145 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 146 |  | ledivmul |  |-  ( ( ( |_ ` x ) e. RR /\ 1 e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) | 
						
							| 147 | 144 69 145 146 | syl3anc |  |-  ( x e. RR+ -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) | 
						
							| 148 | 142 147 | mpbird |  |-  ( x e. RR+ -> ( ( |_ ` x ) / x ) <_ 1 ) | 
						
							| 149 | 68 76 69 137 148 | letrd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ 1 ) | 
						
							| 150 | 66 68 69 70 149 | letrd |  |-  ( x e. RR+ -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ 1 ) | 
						
							| 151 | 150 | ad2antrl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ 1 ) | 
						
							| 152 | 59 64 65 65 151 | elo1d |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. O(1) ) | 
						
							| 153 | 58 152 | eqeltrrid |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) ) e. O(1) ) | 
						
							| 154 | 34 37 153 | o1dif |  |-  ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) e. O(1) ) ) | 
						
							| 155 | 20 154 | mpbird |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) ) | 
						
							| 156 | 155 | mptru |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) |