| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 2 |  | ax-1cn |  |-  1 e. CC | 
						
							| 3 |  | o1const |  |-  ( ( RR+ C_ RR /\ 1 e. CC ) -> ( x e. RR+ |-> 1 ) e. O(1) ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  ( x e. RR+ |-> 1 ) e. O(1) | 
						
							| 5 |  | 1cnd |  |-  ( ( T. /\ x e. RR+ ) -> 1 e. CC ) | 
						
							| 6 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 7 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 8 | 7 | adantl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 9 |  | mucl |  |-  ( n e. NN -> ( mmu ` n ) e. ZZ ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 11 | 10 | zred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 12 | 11 8 | nndivred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) | 
						
							| 13 | 7 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 14 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 15 | 13 14 | sylan2 |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 16 | 15 | relogcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 17 | 12 16 | remulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 19 | 6 18 | fsumcl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 20 | 19 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 21 |  | mulogsumlem |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) | 
						
							| 22 |  | sumex |  |-  sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. _V | 
						
							| 23 | 22 | a1i |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. _V ) | 
						
							| 24 | 21 | a1i |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) ) | 
						
							| 25 | 23 24 | o1mptrcl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 26 | 5 20 | subcld |  |-  ( ( T. /\ x e. RR+ ) -> ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 27 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 28 |  | fz1ssnn |  |-  ( 1 ... ( |_ ` x ) ) C_ NN | 
						
							| 29 | 28 | a1i |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) C_ NN ) | 
						
							| 30 | 29 | sselda |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 31 | 30 9 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 32 | 31 | zred |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) | 
						
							| 33 | 32 30 | nndivred |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) | 
						
							| 34 | 33 | recnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 35 |  | fzfid |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 36 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) | 
						
							| 38 | 37 | nnrpd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) | 
						
							| 39 | 38 | rpcnne0d |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( m e. CC /\ m =/= 0 ) ) | 
						
							| 40 |  | reccl |  |-  ( ( m e. CC /\ m =/= 0 ) -> ( 1 / m ) e. CC ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. CC ) | 
						
							| 42 | 35 41 | fsumcl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. CC ) | 
						
							| 43 |  | simpl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR+ ) | 
						
							| 44 | 43 13 14 | syl2an |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 45 | 44 | relogcld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 46 | 45 | recnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) | 
						
							| 47 | 34 42 46 | subdid |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 48 | 47 | sumeq2dv |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 49 |  | fzfid |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 50 | 34 42 | mulcld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) e. CC ) | 
						
							| 51 | 18 | adantlr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 52 | 49 50 51 | fsumsub |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 53 |  | oveq2 |  |-  ( k = ( n x. m ) -> ( 1 / k ) = ( 1 / ( n x. m ) ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( k = ( n x. m ) -> ( ( mmu ` n ) x. ( 1 / k ) ) = ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) ) | 
						
							| 55 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 56 | 55 | adantr |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR ) | 
						
							| 57 |  | ssrab2 |  |-  { y e. NN | y || k } C_ NN | 
						
							| 58 |  | simprr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. { y e. NN | y || k } ) | 
						
							| 59 | 57 58 | sselid |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. NN ) | 
						
							| 60 | 59 9 | syl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. ZZ ) | 
						
							| 61 | 60 | zcnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 62 |  | elfznn |  |-  ( k e. ( 1 ... ( |_ ` x ) ) -> k e. NN ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. NN ) | 
						
							| 64 | 63 | nnrecred |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / k ) e. RR ) | 
						
							| 65 | 64 | recnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / k ) e. CC ) | 
						
							| 66 | 65 | adantrr |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( 1 / k ) e. CC ) | 
						
							| 67 | 61 66 | mulcld |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( ( mmu ` n ) x. ( 1 / k ) ) e. CC ) | 
						
							| 68 | 54 56 67 | dvdsflsumcom |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( 1 / k ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) ) | 
						
							| 69 |  | oveq2 |  |-  ( k = 1 -> ( 1 / k ) = ( 1 / 1 ) ) | 
						
							| 70 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 71 | 69 70 | eqtrdi |  |-  ( k = 1 -> ( 1 / k ) = 1 ) | 
						
							| 72 |  | flge1nn |  |-  ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 73 | 55 72 | sylan |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 74 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 75 | 73 74 | eleqtrdi |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) | 
						
							| 76 |  | eluzfz1 |  |-  ( ( |_ ` x ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 77 | 75 76 | syl |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 78 | 71 49 29 77 65 | musumsum |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( 1 / k ) ) = 1 ) | 
						
							| 79 | 31 | zcnd |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( mmu ` n ) e. CC ) | 
						
							| 81 | 30 | adantr |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. NN ) | 
						
							| 82 | 81 | nnrpd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. RR+ ) | 
						
							| 83 | 82 | rpcnne0d |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 84 |  | divdiv1 |  |-  ( ( ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( ( mmu ` n ) / n ) / m ) = ( ( mmu ` n ) / ( n x. m ) ) ) | 
						
							| 85 | 80 83 39 84 | syl3anc |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( mmu ` n ) / n ) / m ) = ( ( mmu ` n ) / ( n x. m ) ) ) | 
						
							| 86 | 34 | adantr |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) | 
						
							| 87 | 37 | nncnd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. CC ) | 
						
							| 88 | 37 | nnne0d |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m =/= 0 ) | 
						
							| 89 | 86 87 88 | divrecd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( mmu ` n ) / n ) / m ) = ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 90 |  | nnmulcl |  |-  ( ( n e. NN /\ m e. NN ) -> ( n x. m ) e. NN ) | 
						
							| 91 | 30 36 90 | syl2an |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) e. NN ) | 
						
							| 92 | 91 | nncnd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) e. CC ) | 
						
							| 93 | 91 | nnne0d |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) =/= 0 ) | 
						
							| 94 | 80 92 93 | divrecd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) / ( n x. m ) ) = ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) ) | 
						
							| 95 | 85 89 94 | 3eqtr3rd |  |-  ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 96 | 95 | sumeq2dv |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 97 | 35 34 41 | fsummulc2 |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) | 
						
							| 98 | 96 97 | eqtr4d |  |-  ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) ) | 
						
							| 99 | 98 | sumeq2dv |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) ) | 
						
							| 100 | 68 78 99 | 3eqtr3rd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) = 1 ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 102 | 48 52 101 | 3eqtrd |  |-  ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 103 | 102 | adantl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 104 | 25 26 27 103 | o1eq |  |-  ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) ) | 
						
							| 105 | 21 104 | mpbii |  |-  ( T. -> ( x e. RR+ |-> ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) | 
						
							| 106 | 5 20 105 | o1dif |  |-  ( T. -> ( ( x e. RR+ |-> 1 ) e. O(1) <-> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) ) | 
						
							| 107 | 4 106 | mpbii |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) | 
						
							| 108 | 107 | mptru |  |-  ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) |