| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre |  | 
						
							| 2 |  | ax-1cn |  | 
						
							| 3 |  | o1const |  | 
						
							| 4 | 1 2 3 | mp2an |  | 
						
							| 5 |  | 1cnd |  | 
						
							| 6 |  | fzfid |  | 
						
							| 7 |  | elfznn |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | mucl |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 10 | zred |  | 
						
							| 12 | 11 8 | nndivred |  | 
						
							| 13 | 7 | nnrpd |  | 
						
							| 14 |  | rpdivcl |  | 
						
							| 15 | 13 14 | sylan2 |  | 
						
							| 16 | 15 | relogcld |  | 
						
							| 17 | 12 16 | remulcld |  | 
						
							| 18 | 17 | recnd |  | 
						
							| 19 | 6 18 | fsumcl |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | mulogsumlem |  | 
						
							| 22 |  | sumex |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 | 21 | a1i |  | 
						
							| 25 | 23 24 | o1mptrcl |  | 
						
							| 26 | 5 20 | subcld |  | 
						
							| 27 |  | 1red |  | 
						
							| 28 |  | fz1ssnn |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 29 | sselda |  | 
						
							| 31 | 30 9 | syl |  | 
						
							| 32 | 31 | zred |  | 
						
							| 33 | 32 30 | nndivred |  | 
						
							| 34 | 33 | recnd |  | 
						
							| 35 |  | fzfid |  | 
						
							| 36 |  | elfznn |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 37 | nnrpd |  | 
						
							| 39 | 38 | rpcnne0d |  | 
						
							| 40 |  | reccl |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 | 35 41 | fsumcl |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 | 43 13 14 | syl2an |  | 
						
							| 45 | 44 | relogcld |  | 
						
							| 46 | 45 | recnd |  | 
						
							| 47 | 34 42 46 | subdid |  | 
						
							| 48 | 47 | sumeq2dv |  | 
						
							| 49 |  | fzfid |  | 
						
							| 50 | 34 42 | mulcld |  | 
						
							| 51 | 18 | adantlr |  | 
						
							| 52 | 49 50 51 | fsumsub |  | 
						
							| 53 |  | oveq2 |  | 
						
							| 54 | 53 | oveq2d |  | 
						
							| 55 |  | rpre |  | 
						
							| 56 | 55 | adantr |  | 
						
							| 57 |  | ssrab2 |  | 
						
							| 58 |  | simprr |  | 
						
							| 59 | 57 58 | sselid |  | 
						
							| 60 | 59 9 | syl |  | 
						
							| 61 | 60 | zcnd |  | 
						
							| 62 |  | elfznn |  | 
						
							| 63 | 62 | adantl |  | 
						
							| 64 | 63 | nnrecred |  | 
						
							| 65 | 64 | recnd |  | 
						
							| 66 | 65 | adantrr |  | 
						
							| 67 | 61 66 | mulcld |  | 
						
							| 68 | 54 56 67 | dvdsflsumcom |  | 
						
							| 69 |  | oveq2 |  | 
						
							| 70 |  | 1div1e1 |  | 
						
							| 71 | 69 70 | eqtrdi |  | 
						
							| 72 |  | flge1nn |  | 
						
							| 73 | 55 72 | sylan |  | 
						
							| 74 |  | nnuz |  | 
						
							| 75 | 73 74 | eleqtrdi |  | 
						
							| 76 |  | eluzfz1 |  | 
						
							| 77 | 75 76 | syl |  | 
						
							| 78 | 71 49 29 77 65 | musumsum |  | 
						
							| 79 | 31 | zcnd |  | 
						
							| 80 | 79 | adantr |  | 
						
							| 81 | 30 | adantr |  | 
						
							| 82 | 81 | nnrpd |  | 
						
							| 83 | 82 | rpcnne0d |  | 
						
							| 84 |  | divdiv1 |  | 
						
							| 85 | 80 83 39 84 | syl3anc |  | 
						
							| 86 | 34 | adantr |  | 
						
							| 87 | 37 | nncnd |  | 
						
							| 88 | 37 | nnne0d |  | 
						
							| 89 | 86 87 88 | divrecd |  | 
						
							| 90 |  | nnmulcl |  | 
						
							| 91 | 30 36 90 | syl2an |  | 
						
							| 92 | 91 | nncnd |  | 
						
							| 93 | 91 | nnne0d |  | 
						
							| 94 | 80 92 93 | divrecd |  | 
						
							| 95 | 85 89 94 | 3eqtr3rd |  | 
						
							| 96 | 95 | sumeq2dv |  | 
						
							| 97 | 35 34 41 | fsummulc2 |  | 
						
							| 98 | 96 97 | eqtr4d |  | 
						
							| 99 | 98 | sumeq2dv |  | 
						
							| 100 | 68 78 99 | 3eqtr3rd |  | 
						
							| 101 | 100 | oveq1d |  | 
						
							| 102 | 48 52 101 | 3eqtrd |  | 
						
							| 103 | 102 | adantl |  | 
						
							| 104 | 25 26 27 103 | o1eq |  | 
						
							| 105 | 21 104 | mpbii |  | 
						
							| 106 | 5 20 105 | o1dif |  | 
						
							| 107 | 4 106 | mpbii |  | 
						
							| 108 | 107 | mptru |  |