| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 |  | 
						
							| 2 |  | ioorp |  | 
						
							| 3 | 2 | eqcomi |  | 
						
							| 4 |  | nnuz |  | 
						
							| 5 |  | 1zzd |  | 
						
							| 6 |  | ere |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | 0re |  | 
						
							| 9 |  | epos |  | 
						
							| 10 | 8 6 9 | ltleii |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | 1re |  | 
						
							| 13 |  | addge02 |  | 
						
							| 14 | 12 6 13 | mp2an |  | 
						
							| 15 | 11 14 | sylib |  | 
						
							| 16 | 8 | a1i |  | 
						
							| 17 |  | relogcl |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 18 | resqcld |  | 
						
							| 20 | 19 | rehalfcld |  | 
						
							| 21 |  | rerpdivcl |  | 
						
							| 22 | 17 21 | mpancom |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 |  | nnrp |  | 
						
							| 25 | 24 23 | sylan2 |  | 
						
							| 26 |  | reelprrecn |  | 
						
							| 27 | 26 | a1i |  | 
						
							| 28 |  | cnelprrecn |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 18 | recnd |  | 
						
							| 31 |  | ovexd |  | 
						
							| 32 |  | sqcl |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 33 | halfcld |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | relogf1o |  | 
						
							| 37 |  | f1of |  | 
						
							| 38 | 36 37 | mp1i |  | 
						
							| 39 | 38 | feqmptd |  | 
						
							| 40 |  | fvres |  | 
						
							| 41 | 40 | mpteq2ia |  | 
						
							| 42 | 39 41 | eqtrdi |  | 
						
							| 43 | 42 | oveq2d |  | 
						
							| 44 |  | dvrelog |  | 
						
							| 45 | 43 44 | eqtr3di |  | 
						
							| 46 |  | ovexd |  | 
						
							| 47 |  | 2nn |  | 
						
							| 48 |  | dvexp |  | 
						
							| 49 | 47 48 | mp1i |  | 
						
							| 50 |  | 2m1e1 |  | 
						
							| 51 | 50 | oveq2i |  | 
						
							| 52 |  | exp1 |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 | 51 53 | eqtrid |  | 
						
							| 55 | 54 | oveq2d |  | 
						
							| 56 | 55 | mpteq2dva |  | 
						
							| 57 | 49 56 | eqtrd |  | 
						
							| 58 |  | 2cnd |  | 
						
							| 59 |  | 2ne0 |  | 
						
							| 60 | 59 | a1i |  | 
						
							| 61 | 29 33 46 57 58 60 | dvmptdivc |  | 
						
							| 62 |  | 2cn |  | 
						
							| 63 |  | divcan3 |  | 
						
							| 64 | 62 59 63 | mp3an23 |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 | 65 | mpteq2dva |  | 
						
							| 67 | 61 66 | eqtrd |  | 
						
							| 68 |  | oveq1 |  | 
						
							| 69 | 68 | oveq1d |  | 
						
							| 70 |  | id |  | 
						
							| 71 | 27 29 30 31 34 35 45 67 69 70 | dvmptco |  | 
						
							| 72 |  | rpcn |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 |  | rpne0 |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 | 30 73 75 | divrecd |  | 
						
							| 77 | 76 | mpteq2dva |  | 
						
							| 78 | 71 77 | eqtr4d |  | 
						
							| 79 |  | fveq2 |  | 
						
							| 80 |  | id |  | 
						
							| 81 | 79 80 | oveq12d |  | 
						
							| 82 |  | simp3r |  | 
						
							| 83 |  | simp2l |  | 
						
							| 84 | 83 | rpred |  | 
						
							| 85 |  | simp3l |  | 
						
							| 86 |  | simp2r |  | 
						
							| 87 | 86 | rpred |  | 
						
							| 88 | 6 | a1i |  | 
						
							| 89 | 88 84 87 85 82 | letrd |  | 
						
							| 90 |  | logdivle |  | 
						
							| 91 | 84 85 87 89 90 | syl22anc |  | 
						
							| 92 | 82 91 | mpbid |  | 
						
							| 93 | 72 | cxp1d |  | 
						
							| 94 | 93 | oveq2d |  | 
						
							| 95 | 94 | mpteq2ia |  | 
						
							| 96 |  | 1rp |  | 
						
							| 97 |  | cxploglim |  | 
						
							| 98 | 96 97 | mp1i |  | 
						
							| 99 | 95 98 | eqbrtrrid |  | 
						
							| 100 |  | fveq2 |  | 
						
							| 101 |  | id |  | 
						
							| 102 | 100 101 | oveq12d |  | 
						
							| 103 | 3 4 5 7 15 16 20 23 25 78 81 92 1 99 102 | dvfsumrlim3 |  | 
						
							| 104 | 103 | mptru |  |