Metamath Proof Explorer


Theorem mulog2sumlem1

Description: Asymptotic formula for sum_ n <_ x , log ( x / n ) / n = ( 1 / 2 ) log ^ 2 ( x ) + gamma x. log x - L + O ( log x / x ) , with explicit constants. Equation 10.2.7 of Shapiro, p. 407. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses logdivsum.1 F=y+i=1ylogiilogy22
mulog2sumlem.1 φFL
mulog2sumlem1.2 φA+
mulog2sumlem1.3 φeA
Assertion mulog2sumlem1 φm=1AlogAmmlogA22+γlogA-L2logAA

Proof

Step Hyp Ref Expression
1 logdivsum.1 F=y+i=1ylogiilogy22
2 mulog2sumlem.1 φFL
3 mulog2sumlem1.2 φA+
4 mulog2sumlem1.3 φeA
5 fzfid φ1AFin
6 elfznn m1Am
7 6 nnrpd m1Am+
8 rpdivcl A+m+Am+
9 3 7 8 syl2an φm1AAm+
10 9 relogcld φm1AlogAm
11 6 adantl φm1Am
12 10 11 nndivred φm1AlogAmm
13 5 12 fsumrecl φm=1AlogAmm
14 3 relogcld φlogA
15 14 resqcld φlogA2
16 15 rehalfcld φlogA22
17 emre γ
18 remulcl γlogAγlogA
19 17 14 18 sylancr φγlogA
20 rpsup sup+*<=+∞
21 20 a1i φsup+*<=+∞
22 1 logdivsum F:+FdomFLA+eAFALlogAA
23 22 simp1i F:+
24 23 a1i φF:+
25 24 feqmptd φF=x+Fx
26 25 2 eqbrtrrd φx+FxL
27 23 ffvelcdmi x+Fx
28 27 adantl φx+Fx
29 21 26 28 rlimrecl φL
30 19 29 resubcld φγlogAL
31 16 30 readdcld φlogA22+γlogA-L
32 13 31 resubcld φm=1AlogAmmlogA22+γlogA-L
33 32 recnd φm=1AlogAmmlogA22+γlogA-L
34 33 abscld φm=1AlogAmmlogA22+γlogA-L
35 rerpdivcl logAm+logAm
36 14 7 35 syl2an φm1AlogAm
37 36 recnd φm1AlogAm
38 5 37 fsumcl φm=1AlogAm
39 14 recnd φlogA
40 readdcl logAγlogA+γ
41 14 17 40 sylancl φlogA+γ
42 41 recnd φlogA+γ
43 39 42 mulcld φlogAlogA+γ
44 38 43 subcld φm=1AlogAmlogAlogA+γ
45 44 abscld φm=1AlogAmlogAlogA+γ
46 11 nnrpd φm1Am+
47 46 relogcld φm1Alogm
48 47 11 nndivred φm1Alogmm
49 48 recnd φm1Alogmm
50 5 49 fsumcl φm=1Alogmm
51 16 recnd φlogA22
52 29 recnd φL
53 51 52 addcld φlogA22+L
54 50 53 subcld φm=1AlogmmlogA22+L
55 54 abscld φm=1AlogmmlogA22+L
56 45 55 readdcld φm=1AlogAmlogAlogA+γ+m=1AlogmmlogA22+L
57 2re 2
58 14 3 rerpdivcld φlogAA
59 remulcl 2logAA2logAA
60 57 58 59 sylancr φ2logAA
61 relogdiv A+m+logAm=logAlogm
62 3 7 61 syl2an φm1AlogAm=logAlogm
63 62 oveq1d φm1AlogAmm=logAlogmm
64 39 adantr φm1AlogA
65 47 recnd φm1Alogm
66 46 rpcnne0d φm1Amm0
67 divsubdir logAlogmmm0logAlogmm=logAmlogmm
68 64 65 66 67 syl3anc φm1AlogAlogmm=logAmlogmm
69 63 68 eqtrd φm1AlogAmm=logAmlogmm
70 69 sumeq2dv φm=1AlogAmm=m=1AlogAmlogmm
71 5 37 49 fsumsub φm=1AlogAmlogmm=m=1AlogAmm=1Alogmm
72 70 71 eqtrd φm=1AlogAmm=m=1AlogAmm=1Alogmm
73 remulcl logAγlogAγ
74 14 17 73 sylancl φlogAγ
75 16 74 readdcld φlogA22+logAγ
76 75 recnd φlogA22+logAγ
77 76 51 pncand φlogA22+logAγ+logA22-logA22=logA22+logAγ
78 17 recni γ
79 78 a1i φγ
80 39 39 79 adddid φlogAlogA+γ=logAlogA+logAγ
81 15 recnd φlogA2
82 81 2halvesd φlogA22+logA22=logA2
83 39 sqvald φlogA2=logAlogA
84 82 83 eqtrd φlogA22+logA22=logAlogA
85 84 oveq1d φlogA22+logA22+logAγ=logAlogA+logAγ
86 74 recnd φlogAγ
87 51 51 86 add32d φlogA22+logA22+logAγ=logA22+logAγ+logA22
88 80 85 87 3eqtr2d φlogAlogA+γ=logA22+logAγ+logA22
89 88 oveq1d φlogAlogA+γlogA22=logA22+logAγ+logA22-logA22
90 mulcom γlogAγlogA=logAγ
91 78 39 90 sylancr φγlogA=logAγ
92 91 oveq2d φlogA22+γlogA=logA22+logAγ
93 77 89 92 3eqtr4rd φlogA22+γlogA=logAlogA+γlogA22
94 93 oveq1d φlogA22+γlogA-L=logAlogA+γ-logA22-L
95 91 86 eqeltrd φγlogA
96 51 95 52 addsubassd φlogA22+γlogA-L=logA22+γlogA-L
97 43 51 52 subsub4d φlogAlogA+γ-logA22-L=logAlogA+γlogA22+L
98 94 96 97 3eqtr3d φlogA22+γlogA-L=logAlogA+γlogA22+L
99 72 98 oveq12d φm=1AlogAmmlogA22+γlogA-L=m=1AlogAm-m=1Alogmm-logAlogA+γlogA22+L
100 38 50 43 53 sub4d φm=1AlogAm-m=1Alogmm-logAlogA+γlogA22+L=m=1AlogAm-logAlogA+γ-m=1AlogmmlogA22+L
101 99 100 eqtrd φm=1AlogAmmlogA22+γlogA-L=m=1AlogAm-logAlogA+γ-m=1AlogmmlogA22+L
102 101 fveq2d φm=1AlogAmmlogA22+γlogA-L=m=1AlogAm-logAlogA+γ-m=1AlogmmlogA22+L
103 44 54 abs2dif2d φm=1AlogAm-logAlogA+γ-m=1AlogmmlogA22+Lm=1AlogAmlogAlogA+γ+m=1AlogmmlogA22+L
104 102 103 eqbrtrd φm=1AlogAmmlogA22+γlogA-Lm=1AlogAmlogAlogA+γ+m=1AlogmmlogA22+L
105 harmonicbnd4 A+m=1A1mlogA+γ1A
106 3 105 syl φm=1A1mlogA+γ1A
107 11 nnrecred φm1A1m
108 5 107 fsumrecl φm=1A1m
109 108 41 resubcld φm=1A1mlogA+γ
110 109 recnd φm=1A1mlogA+γ
111 110 abscld φm=1A1mlogA+γ
112 3 rprecred φ1A
113 0red φ0
114 1red φ1
115 0lt1 0<1
116 115 a1i φ0<1
117 loge loge=1
118 epr e+
119 logleb e+A+eAlogelogA
120 118 3 119 sylancr φeAlogelogA
121 4 120 mpbid φlogelogA
122 117 121 eqbrtrrid φ1logA
123 113 114 14 116 122 ltletrd φ0<logA
124 lemul2 m=1A1mlogA+γ1AlogA0<logAm=1A1mlogA+γ1AlogAm=1A1mlogA+γlogA1A
125 111 112 14 123 124 syl112anc φm=1A1mlogA+γ1AlogAm=1A1mlogA+γlogA1A
126 106 125 mpbid φlogAm=1A1mlogA+γlogA1A
127 46 rpcnd φm1Am
128 46 rpne0d φm1Am0
129 64 127 128 divrecd φm1AlogAm=logA1m
130 129 sumeq2dv φm=1AlogAm=m=1AlogA1m
131 107 recnd φm1A1m
132 5 39 131 fsummulc2 φlogAm=1A1m=m=1AlogA1m
133 130 132 eqtr4d φm=1AlogAm=logAm=1A1m
134 133 oveq1d φm=1AlogAmlogAlogA+γ=logAm=1A1mlogAlogA+γ
135 5 131 fsumcl φm=1A1m
136 39 135 42 subdid φlogAm=1A1mlogA+γ=logAm=1A1mlogAlogA+γ
137 134 136 eqtr4d φm=1AlogAmlogAlogA+γ=logAm=1A1mlogA+γ
138 137 fveq2d φm=1AlogAmlogAlogA+γ=logAm=1A1mlogA+γ
139 135 42 subcld φm=1A1mlogA+γ
140 39 139 absmuld φlogAm=1A1mlogA+γ=logAm=1A1mlogA+γ
141 113 14 123 ltled φ0logA
142 14 141 absidd φlogA=logA
143 142 oveq1d φlogAm=1A1mlogA+γ=logAm=1A1mlogA+γ
144 138 140 143 3eqtrd φm=1AlogAmlogAlogA+γ=logAm=1A1mlogA+γ
145 3 rpcnd φA
146 3 rpne0d φA0
147 39 145 146 divrecd φlogAA=logA1A
148 126 144 147 3brtr4d φm=1AlogAmlogAlogA+γlogAA
149 fveq2 i=mlogi=logm
150 id i=mi=m
151 149 150 oveq12d i=mlogii=logmm
152 151 cbvsumv i=1ylogii=m=1ylogmm
153 fveq2 y=Ay=A
154 153 oveq2d y=A1y=1A
155 154 sumeq1d y=Am=1ylogmm=m=1Alogmm
156 152 155 eqtrid y=Ai=1ylogii=m=1Alogmm
157 fveq2 y=Alogy=logA
158 157 oveq1d y=Alogy2=logA2
159 158 oveq1d y=Alogy22=logA22
160 156 159 oveq12d y=Ai=1ylogiilogy22=m=1AlogmmlogA22
161 ovex m=1AlogmmlogA22V
162 160 1 161 fvmpt A+FA=m=1AlogmmlogA22
163 3 162 syl φFA=m=1AlogmmlogA22
164 163 oveq1d φFAL=m=1Alogmm-logA22-L
165 50 51 52 subsub4d φm=1Alogmm-logA22-L=m=1AlogmmlogA22+L
166 164 165 eqtrd φFAL=m=1AlogmmlogA22+L
167 166 fveq2d φFAL=m=1AlogmmlogA22+L
168 22 simp3i FLA+eAFALlogAA
169 2 3 4 168 syl3anc φFALlogAA
170 167 169 eqbrtrrd φm=1AlogmmlogA22+LlogAA
171 45 55 58 58 148 170 le2addd φm=1AlogAmlogAlogA+γ+m=1AlogmmlogA22+LlogAA+logAA
172 58 recnd φlogAA
173 172 2timesd φ2logAA=logAA+logAA
174 171 173 breqtrrd φm=1AlogAmlogAlogA+γ+m=1AlogmmlogA22+L2logAA
175 34 56 60 104 174 letrd φm=1AlogAmmlogA22+γlogA-L2logAA