| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 | ⊢ 𝐹  =  ( 𝑦  ∈  ℝ+  ↦  ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 )  /  𝑖 )  −  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 2 |  | mulog2sumlem.1 | ⊢ ( 𝜑  →  𝐹  ⇝𝑟  𝐿 ) | 
						
							| 3 |  | mulog2sumlem1.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 4 |  | mulog2sumlem1.3 | ⊢ ( 𝜑  →  e  ≤  𝐴 ) | 
						
							| 5 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 6 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 7 | 6 | nnrpd | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 8 |  | rpdivcl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℝ+ )  →  ( 𝐴  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 9 | 3 7 8 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 𝐴  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 10 | 9 | relogcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ ( 𝐴  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 11 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 12 | 10 11 | nndivred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 13 | 5 12 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 14 | 3 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 15 | 14 | resqcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 16 | 15 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 17 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 18 |  | remulcl | ⊢ ( ( γ  ∈  ℝ  ∧  ( log ‘ 𝐴 )  ∈  ℝ )  →  ( γ  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 19 | 17 14 18 | sylancr | ⊢ ( 𝜑  →  ( γ  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 20 |  | rpsup | ⊢ sup ( ℝ+ ,  ℝ* ,   <  )  =  +∞ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  sup ( ℝ+ ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 22 | 1 | logdivsum | ⊢ ( 𝐹 : ℝ+ ⟶ ℝ  ∧  𝐹  ∈  dom   ⇝𝑟   ∧  ( ( 𝐹  ⇝𝑟  𝐿  ∧  𝐴  ∈  ℝ+  ∧  e  ≤  𝐴 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  𝐿 ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) | 
						
							| 23 | 22 | simp1i | ⊢ 𝐹 : ℝ+ ⟶ ℝ | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  𝐹 : ℝ+ ⟶ ℝ ) | 
						
							| 25 | 24 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ+  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 26 | 25 2 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( 𝐹 ‘ 𝑥 ) )  ⇝𝑟  𝐿 ) | 
						
							| 27 | 23 | ffvelcdmi | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 29 | 21 26 28 | rlimrecl | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 30 | 19 29 | resubcld | ⊢ ( 𝜑  →  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 )  ∈  ℝ ) | 
						
							| 31 | 16 30 | readdcld | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) )  ∈  ℝ ) | 
						
							| 32 | 13 31 | resubcld | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) )  ∈  ℝ ) | 
						
							| 33 | 32 | recnd | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) )  ∈  ℂ ) | 
						
							| 34 | 33 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) ) )  ∈  ℝ ) | 
						
							| 35 |  | rerpdivcl | ⊢ ( ( ( log ‘ 𝐴 )  ∈  ℝ  ∧  𝑚  ∈  ℝ+ )  →  ( ( log ‘ 𝐴 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 36 | 14 7 35 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ 𝐴 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 37 | 36 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ 𝐴 )  /  𝑚 )  ∈  ℂ ) | 
						
							| 38 | 5 37 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  ∈  ℂ ) | 
						
							| 39 | 14 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 40 |  | readdcl | ⊢ ( ( ( log ‘ 𝐴 )  ∈  ℝ  ∧  γ  ∈  ℝ )  →  ( ( log ‘ 𝐴 )  +  γ )  ∈  ℝ ) | 
						
							| 41 | 14 17 40 | sylancl | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  +  γ )  ∈  ℝ ) | 
						
							| 42 | 41 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  +  γ )  ∈  ℂ ) | 
						
							| 43 | 39 42 | mulcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  ∈  ℂ ) | 
						
							| 44 | 38 43 | subcld | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  ∈  ℂ ) | 
						
							| 45 | 44 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  ∈  ℝ ) | 
						
							| 46 | 11 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 47 | 46 | relogcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 48 | 47 11 | nndivred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ 𝑚 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ 𝑚 )  /  𝑚 )  ∈  ℂ ) | 
						
							| 50 | 5 49 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  ∈  ℂ ) | 
						
							| 51 | 16 | recnd | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 52 | 29 | recnd | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 53 | 51 52 | addcld | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 )  ∈  ℂ ) | 
						
							| 54 | 50 53 | subcld | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) )  ∈  ℂ ) | 
						
							| 55 | 54 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) )  ∈  ℝ ) | 
						
							| 56 | 45 55 | readdcld | ⊢ ( 𝜑  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  +  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) )  ∈  ℝ ) | 
						
							| 57 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 58 | 14 3 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  /  𝐴 )  ∈  ℝ ) | 
						
							| 59 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( ( log ‘ 𝐴 )  /  𝐴 )  ∈  ℝ )  →  ( 2  ·  ( ( log ‘ 𝐴 )  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 60 | 57 58 59 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( ( log ‘ 𝐴 )  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 61 |  | relogdiv | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℝ+ )  →  ( log ‘ ( 𝐴  /  𝑚 ) )  =  ( ( log ‘ 𝐴 )  −  ( log ‘ 𝑚 ) ) ) | 
						
							| 62 | 3 7 61 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ ( 𝐴  /  𝑚 ) )  =  ( ( log ‘ 𝐴 )  −  ( log ‘ 𝑚 ) ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  =  ( ( ( log ‘ 𝐴 )  −  ( log ‘ 𝑚 ) )  /  𝑚 ) ) | 
						
							| 64 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 65 | 47 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 66 | 46 | rpcnne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) ) | 
						
							| 67 |  | divsubdir | ⊢ ( ( ( log ‘ 𝐴 )  ∈  ℂ  ∧  ( log ‘ 𝑚 )  ∈  ℂ  ∧  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) )  →  ( ( ( log ‘ 𝐴 )  −  ( log ‘ 𝑚 ) )  /  𝑚 )  =  ( ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 68 | 64 65 66 67 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( ( log ‘ 𝐴 )  −  ( log ‘ 𝑚 ) )  /  𝑚 )  =  ( ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 69 | 63 68 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  =  ( ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 70 | 69 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 71 | 5 37 49 | fsumsub | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝑚 )  /  𝑚 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 72 | 70 71 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 73 |  | remulcl | ⊢ ( ( ( log ‘ 𝐴 )  ∈  ℝ  ∧  γ  ∈  ℝ )  →  ( ( log ‘ 𝐴 )  ·  γ )  ∈  ℝ ) | 
						
							| 74 | 14 17 73 | sylancl | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  γ )  ∈  ℝ ) | 
						
							| 75 | 16 74 | readdcld | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  ∈  ℝ ) | 
						
							| 76 | 75 | recnd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  ∈  ℂ ) | 
						
							| 77 | 76 51 | pncand | ⊢ ( 𝜑  →  ( ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  =  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) ) ) | 
						
							| 78 | 17 | recni | ⊢ γ  ∈  ℂ | 
						
							| 79 | 78 | a1i | ⊢ ( 𝜑  →  γ  ∈  ℂ ) | 
						
							| 80 | 39 39 79 | adddid | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  =  ( ( ( log ‘ 𝐴 )  ·  ( log ‘ 𝐴 ) )  +  ( ( log ‘ 𝐴 )  ·  γ ) ) ) | 
						
							| 81 | 15 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 82 | 81 | 2halvesd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  =  ( ( log ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 83 | 39 | sqvald | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 ) ↑ 2 )  =  ( ( log ‘ 𝐴 )  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 84 | 82 83 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  =  ( ( log ‘ 𝐴 )  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 85 | 84 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  =  ( ( ( log ‘ 𝐴 )  ·  ( log ‘ 𝐴 ) )  +  ( ( log ‘ 𝐴 )  ·  γ ) ) ) | 
						
							| 86 | 74 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  γ )  ∈  ℂ ) | 
						
							| 87 | 51 51 86 | add32d | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  =  ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 88 | 80 85 87 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  =  ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  =  ( ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) )  +  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 90 |  | mulcom | ⊢ ( ( γ  ∈  ℂ  ∧  ( log ‘ 𝐴 )  ∈  ℂ )  →  ( γ  ·  ( log ‘ 𝐴 ) )  =  ( ( log ‘ 𝐴 )  ·  γ ) ) | 
						
							| 91 | 78 39 90 | sylancr | ⊢ ( 𝜑  →  ( γ  ·  ( log ‘ 𝐴 ) )  =  ( ( log ‘ 𝐴 )  ·  γ ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( γ  ·  ( log ‘ 𝐴 ) ) )  =  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( log ‘ 𝐴 )  ·  γ ) ) ) | 
						
							| 93 | 77 89 92 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( γ  ·  ( log ‘ 𝐴 ) ) )  =  ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( γ  ·  ( log ‘ 𝐴 ) ) )  −  𝐿 )  =  ( ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  −  𝐿 ) ) | 
						
							| 95 | 91 86 | eqeltrd | ⊢ ( 𝜑  →  ( γ  ·  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 96 | 51 95 52 | addsubassd | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( γ  ·  ( log ‘ 𝐴 ) ) )  −  𝐿 )  =  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) ) | 
						
							| 97 | 43 51 52 | subsub4d | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  −  𝐿 )  =  ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) | 
						
							| 98 | 94 96 97 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) )  =  ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) | 
						
							| 99 | 72 98 | oveq12d | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) )  −  ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) | 
						
							| 100 | 38 50 43 53 | sub4d | ⊢ ( 𝜑  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) )  −  ( ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) | 
						
							| 101 | 99 100 | eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) ) )  =  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) ) | 
						
							| 103 | 44 54 | abs2dif2d | ⊢ ( 𝜑  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) )  ≤  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  +  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) ) | 
						
							| 104 | 102 103 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) ) )  ≤  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  +  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) ) | 
						
							| 105 |  | harmonicbnd4 | ⊢ ( 𝐴  ∈  ℝ+  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ≤  ( 1  /  𝐴 ) ) | 
						
							| 106 | 3 105 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ≤  ( 1  /  𝐴 ) ) | 
						
							| 107 | 11 | nnrecred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 108 | 5 107 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 109 | 108 41 | resubcld | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) )  ∈  ℝ ) | 
						
							| 110 | 109 | recnd | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) )  ∈  ℂ ) | 
						
							| 111 | 110 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ∈  ℝ ) | 
						
							| 112 | 3 | rprecred | ⊢ ( 𝜑  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 113 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 114 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 115 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 116 | 115 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 117 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 118 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 119 |  | logleb | ⊢ ( ( e  ∈  ℝ+  ∧  𝐴  ∈  ℝ+ )  →  ( e  ≤  𝐴  ↔  ( log ‘ e )  ≤  ( log ‘ 𝐴 ) ) ) | 
						
							| 120 | 118 3 119 | sylancr | ⊢ ( 𝜑  →  ( e  ≤  𝐴  ↔  ( log ‘ e )  ≤  ( log ‘ 𝐴 ) ) ) | 
						
							| 121 | 4 120 | mpbid | ⊢ ( 𝜑  →  ( log ‘ e )  ≤  ( log ‘ 𝐴 ) ) | 
						
							| 122 | 117 121 | eqbrtrrid | ⊢ ( 𝜑  →  1  ≤  ( log ‘ 𝐴 ) ) | 
						
							| 123 | 113 114 14 116 122 | ltletrd | ⊢ ( 𝜑  →  0  <  ( log ‘ 𝐴 ) ) | 
						
							| 124 |  | lemul2 | ⊢ ( ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ  ∧  ( ( log ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( log ‘ 𝐴 ) ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ≤  ( 1  /  𝐴 )  ↔  ( ( log ‘ 𝐴 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  ≤  ( ( log ‘ 𝐴 )  ·  ( 1  /  𝐴 ) ) ) ) | 
						
							| 125 | 111 112 14 123 124 | syl112anc | ⊢ ( 𝜑  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  ≤  ( 1  /  𝐴 )  ↔  ( ( log ‘ 𝐴 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  ≤  ( ( log ‘ 𝐴 )  ·  ( 1  /  𝐴 ) ) ) ) | 
						
							| 126 | 106 125 | mpbid | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  ≤  ( ( log ‘ 𝐴 )  ·  ( 1  /  𝐴 ) ) ) | 
						
							| 127 | 46 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 128 | 46 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑚  ≠  0 ) | 
						
							| 129 | 64 127 128 | divrecd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ 𝐴 )  /  𝑚 )  =  ( ( log ‘ 𝐴 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 130 | 129 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 131 | 107 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 132 | 5 39 131 | fsummulc2 | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 133 | 130 132 | eqtr4d | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  =  ( ( log ‘ 𝐴 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 ) ) ) | 
						
							| 134 | 133 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  =  ( ( ( log ‘ 𝐴 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 ) )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) | 
						
							| 135 | 5 131 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 136 | 39 135 42 | subdid | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) )  =  ( ( ( log ‘ 𝐴 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 ) )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) | 
						
							| 137 | 134 136 | eqtr4d | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) )  =  ( ( log ‘ 𝐴 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) | 
						
							| 138 | 137 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  =  ( abs ‘ ( ( log ‘ 𝐴 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) ) | 
						
							| 139 | 135 42 | subcld | ⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) )  ∈  ℂ ) | 
						
							| 140 | 39 139 | absmuld | ⊢ ( 𝜑  →  ( abs ‘ ( ( log ‘ 𝐴 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  =  ( ( abs ‘ ( log ‘ 𝐴 ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) ) | 
						
							| 141 | 113 14 123 | ltled | ⊢ ( 𝜑  →  0  ≤  ( log ‘ 𝐴 ) ) | 
						
							| 142 | 14 141 | absidd | ⊢ ( 𝜑  →  ( abs ‘ ( log ‘ 𝐴 ) )  =  ( log ‘ 𝐴 ) ) | 
						
							| 143 | 142 | oveq1d | ⊢ ( 𝜑  →  ( ( abs ‘ ( log ‘ 𝐴 ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  =  ( ( log ‘ 𝐴 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) ) | 
						
							| 144 | 138 140 143 | 3eqtrd | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  =  ( ( log ‘ 𝐴 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1  /  𝑚 )  −  ( ( log ‘ 𝐴 )  +  γ ) ) ) ) ) | 
						
							| 145 | 3 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 146 | 3 | rpne0d | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 147 | 39 145 146 | divrecd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  /  𝐴 )  =  ( ( log ‘ 𝐴 )  ·  ( 1  /  𝐴 ) ) ) | 
						
							| 148 | 126 144 147 | 3brtr4d | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) | 
						
							| 149 |  | fveq2 | ⊢ ( 𝑖  =  𝑚  →  ( log ‘ 𝑖 )  =  ( log ‘ 𝑚 ) ) | 
						
							| 150 |  | id | ⊢ ( 𝑖  =  𝑚  →  𝑖  =  𝑚 ) | 
						
							| 151 | 149 150 | oveq12d | ⊢ ( 𝑖  =  𝑚  →  ( ( log ‘ 𝑖 )  /  𝑖 )  =  ( ( log ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 152 | 151 | cbvsumv | ⊢ Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 )  /  𝑖 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) | 
						
							| 153 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( ⌊ ‘ 𝑦 )  =  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 154 | 153 | oveq2d | ⊢ ( 𝑦  =  𝐴  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  =  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 155 | 154 | sumeq1d | ⊢ ( 𝑦  =  𝐴  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 156 | 152 155 | eqtrid | ⊢ ( 𝑦  =  𝐴  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 )  /  𝑖 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 157 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( log ‘ 𝑦 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 158 | 157 | oveq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( log ‘ 𝑦 ) ↑ 2 )  =  ( ( log ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 159 | 158 | oveq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 )  =  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) | 
						
							| 160 | 156 159 | oveq12d | ⊢ ( 𝑦  =  𝐴  →  ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 )  /  𝑖 )  −  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 161 |  | ovex | ⊢ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  ∈  V | 
						
							| 162 | 160 1 161 | fvmpt | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐹 ‘ 𝐴 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 163 | 3 162 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 164 | 163 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  −  𝐿 )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  −  𝐿 ) ) | 
						
							| 165 | 50 51 52 | subsub4d | ⊢ ( 𝜑  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 ) )  −  𝐿 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) | 
						
							| 166 | 164 165 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  −  𝐿 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) | 
						
							| 167 | 166 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  𝐿 ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) ) | 
						
							| 168 | 22 | simp3i | ⊢ ( ( 𝐹  ⇝𝑟  𝐿  ∧  𝐴  ∈  ℝ+  ∧  e  ≤  𝐴 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  𝐿 ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) | 
						
							| 169 | 2 3 4 168 | syl3anc | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  𝐿 ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) | 
						
							| 170 | 167 169 | eqbrtrrd | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) | 
						
							| 171 | 45 55 58 58 148 170 | le2addd | ⊢ ( 𝜑  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  +  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) )  ≤  ( ( ( log ‘ 𝐴 )  /  𝐴 )  +  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) | 
						
							| 172 | 58 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  /  𝐴 )  ∈  ℂ ) | 
						
							| 173 | 172 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  ( ( log ‘ 𝐴 )  /  𝐴 ) )  =  ( ( ( log ‘ 𝐴 )  /  𝐴 )  +  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) | 
						
							| 174 | 171 173 | breqtrrd | ⊢ ( 𝜑  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 )  /  𝑚 )  −  ( ( log ‘ 𝐴 )  ·  ( ( log ‘ 𝐴 )  +  γ ) ) ) )  +  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  𝐿 ) ) ) )  ≤  ( 2  ·  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) | 
						
							| 175 | 34 56 60 104 174 | letrd | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ 𝐴 ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ 𝐴 ) )  −  𝐿 ) ) ) )  ≤  ( 2  ·  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) |