| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 | ⊢ 𝐹  =  ( 𝑦  ∈  ℝ+  ↦  ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 )  /  𝑖 )  −  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 2 |  | mulog2sumlem.1 | ⊢ ( 𝜑  →  𝐹  ⇝𝑟  𝐿 ) | 
						
							| 3 |  | mulog2sumlem2.t | ⊢ 𝑇  =  ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) | 
						
							| 4 |  | mulog2sumlem2.r | ⊢ 𝑅  =  ( ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  +  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 5 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 6 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 7 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 9 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 10 | 9 | nnrpd | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 11 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 13 | 12 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 15 | 13 14 | rerpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 16 | 7 15 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 17 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ∈  ℝ )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ∈  ℝ ) | 
						
							| 18 | 6 16 17 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ∈  ℝ ) | 
						
							| 19 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 20 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 21 |  | rlimcl | ⊢ ( 𝐹  ⇝𝑟  𝐿  →  𝐿  ∈  ℂ ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 23 | 22 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 24 |  | readdcl | ⊢ ( ( γ  ∈  ℝ  ∧  ( abs ‘ 𝐿 )  ∈  ℝ )  →  ( γ  +  ( abs ‘ 𝐿 ) )  ∈  ℝ ) | 
						
							| 25 | 20 23 24 | sylancr | ⊢ ( 𝜑  →  ( γ  +  ( abs ‘ 𝐿 ) )  ∈  ℝ ) | 
						
							| 26 |  | readdcl | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  ( γ  +  ( abs ‘ 𝐿 ) )  ∈  ℝ )  →  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  ∈  ℝ ) | 
						
							| 27 | 19 25 26 | sylancr | ⊢ ( 𝜑  →  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  ∈  ℝ ) | 
						
							| 28 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 2 )  ∈  Fin ) | 
						
							| 29 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 30 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... 2 )  →  𝑚  ∈  ℕ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 32 | 31 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 33 |  | rpdivcl | ⊢ ( ( e  ∈  ℝ+  ∧  𝑚  ∈  ℝ+ )  →  ( e  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 34 | 29 32 33 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( e  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 35 | 34 | relogcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( log ‘ ( e  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 36 | 35 31 | nndivred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 37 | 28 36 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 38 | 27 37 | readdcld | ⊢ ( 𝜑  →  ( ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  +  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 39 | 4 38 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 40 |  | remulcl | ⊢ ( ( 𝑅  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( 𝑅  ·  2 )  ∈  ℝ ) | 
						
							| 41 | 39 6 40 | sylancl | ⊢ ( 𝜑  →  ( 𝑅  ·  2 )  ∈  ℝ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑅  ·  2 )  ∈  ℝ ) | 
						
							| 43 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  2  ∈  ℝ ) | 
						
							| 44 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 45 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 46 |  | o1const | ⊢ ( ( ℝ+  ⊆  ℝ  ∧  2  ∈  ℂ )  →  ( 𝑥  ∈  ℝ+  ↦  2 )  ∈  𝑂(1) ) | 
						
							| 47 | 44 45 46 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  2 )  ∈  𝑂(1) ) | 
						
							| 48 |  | logfacrlim2 | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ⇝𝑟  1 | 
						
							| 49 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ⇝𝑟  1  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 50 | 48 49 | mp1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 51 | 43 16 47 50 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 52 | 41 | recnd | ⊢ ( 𝜑  →  ( 𝑅  ·  2 )  ∈  ℂ ) | 
						
							| 53 |  | o1const | ⊢ ( ( ℝ+  ⊆  ℝ  ∧  ( 𝑅  ·  2 )  ∈  ℂ )  →  ( 𝑥  ∈  ℝ+  ↦  ( 𝑅  ·  2 ) )  ∈  𝑂(1) ) | 
						
							| 54 | 44 52 53 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( 𝑅  ·  2 ) )  ∈  𝑂(1) ) | 
						
							| 55 | 18 42 51 54 | o1add2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 56 | 18 42 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) )  ∈  ℝ ) | 
						
							| 57 | 9 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 58 |  | mucl | ⊢ ( 𝑛  ∈  ℕ  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 60 | 59 | zred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 61 | 60 57 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 62 | 61 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 63 | 13 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 64 | 63 | sqcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 65 | 64 | halfcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 66 |  | remulcl | ⊢ ( ( γ  ∈  ℝ  ∧  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 67 | 20 13 66 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 68 | 67 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 69 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝐿  ∈  ℂ ) | 
						
							| 70 | 68 69 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 )  ∈  ℂ ) | 
						
							| 71 | 65 70 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) )  ∈  ℂ ) | 
						
							| 72 | 3 71 | eqeltrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑇  ∈  ℂ ) | 
						
							| 73 | 62 72 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  ∈  ℂ ) | 
						
							| 74 | 7 73 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  ∈  ℂ ) | 
						
							| 75 |  | relogcl | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 77 | 76 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 78 | 74 77 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 79 | 78 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 80 | 79 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 81 | 56 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) )  ∈  ℝ ) | 
						
							| 82 | 56 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) )  ∈  ℂ ) | 
						
							| 83 | 82 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) )  ∈  ℝ ) | 
						
							| 84 | 83 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) )  ∈  ℝ ) | 
						
							| 85 | 59 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 86 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 87 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 88 |  | nnrp | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ+ ) | 
						
							| 89 |  | rpdivcl | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ+  ∧  𝑚  ∈  ℝ+ )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 90 | 12 88 89 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 91 | 90 | relogcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 92 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 93 | 91 92 | nndivred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 94 | 93 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ ) | 
						
							| 95 | 87 94 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ ) | 
						
							| 96 | 86 95 | fsumcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ ) | 
						
							| 97 | 72 96 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 98 | 57 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 99 | 57 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≠  0 ) | 
						
							| 100 | 85 97 98 99 | div23d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 )  =  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 101 | 62 72 96 | subdid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  =  ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 102 | 100 101 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 )  =  ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 103 | 102 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 104 | 62 96 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 105 | 7 73 104 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 106 | 103 105 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 107 | 106 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 108 | 86 62 95 | fsummulc2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) | 
						
							| 109 | 85 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 110 | 98 99 | jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 112 |  | div23 | ⊢ ( ( ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  /  𝑛 )  =  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) | 
						
							| 113 |  | divass | ⊢ ( ( ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  /  𝑛 )  =  ( ( μ ‘ 𝑛 )  ·  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 ) ) ) | 
						
							| 114 | 112 113 | eqtr3d | ⊢ ( ( ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 ) ) ) | 
						
							| 115 | 109 94 111 114 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 ) ) ) | 
						
							| 116 | 91 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 117 | 92 | nnrpd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 118 |  | rpcnne0 | ⊢ ( 𝑚  ∈  ℝ+  →  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) ) | 
						
							| 120 |  | divdiv1 | ⊢ ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℂ  ∧  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 )  =  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  ( 𝑚  ·  𝑛 ) ) ) | 
						
							| 121 | 116 119 111 120 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 )  =  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  ( 𝑚  ·  𝑛 ) ) ) | 
						
							| 122 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 123 | 122 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 125 | 124 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  𝑥  ∈  ℂ ) | 
						
							| 127 |  | divdiv1 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 )  ∧  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  =  ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 128 | 126 111 119 127 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  =  ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  =  ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 130 | 92 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℂ ) | 
						
							| 131 | 98 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 132 | 130 131 | mulcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  ·  𝑛 )  =  ( 𝑛  ·  𝑚 ) ) | 
						
							| 133 | 129 132 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  ( 𝑚  ·  𝑛 ) )  =  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 134 | 121 133 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 )  =  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 135 | 134 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( μ ‘ 𝑛 )  ·  ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  /  𝑛 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 136 | 115 135 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 137 | 87 136 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 138 | 137 | sumeq2dv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 139 | 108 138 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 140 | 139 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 141 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( 𝑥  /  𝑘 )  =  ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 142 | 141 | fveq2d | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( log ‘ ( 𝑥  /  𝑘 ) )  =  ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 143 |  | id | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  𝑘  =  ( 𝑛  ·  𝑚 ) ) | 
						
							| 144 | 142 143 | oveq12d | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 )  =  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 145 | 144 | oveq2d | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 146 | 8 | rpred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 147 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ℕ | 
						
							| 148 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 149 | 147 148 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  ℕ ) | 
						
							| 150 | 149 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 151 | 150 | zred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( μ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 152 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 153 | 152 | adantr | ⊢ ( ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  𝑘  ∈  ℕ ) | 
						
							| 154 | 153 | nnrpd | ⊢ ( ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } )  →  𝑘  ∈  ℝ+ ) | 
						
							| 155 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑘  ∈  ℝ+ )  →  ( 𝑥  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 156 | 8 154 155 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( 𝑥  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 157 | 156 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( log ‘ ( 𝑥  /  𝑘 ) )  ∈  ℝ ) | 
						
							| 158 | 152 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑘  ∈  ℕ ) | 
						
							| 159 | 157 158 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 )  ∈  ℝ ) | 
						
							| 160 | 151 159 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) )  ∈  ℝ ) | 
						
							| 161 | 160 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 162 | 145 146 161 | dvdsflsumcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  ( 𝑛  ·  𝑚 ) ) )  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 163 | 140 162 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) ) ) | 
						
							| 164 | 163 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) ) ) | 
						
							| 165 |  | oveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑥  /  𝑘 )  =  ( 𝑥  /  1 ) ) | 
						
							| 166 | 165 | fveq2d | ⊢ ( 𝑘  =  1  →  ( log ‘ ( 𝑥  /  𝑘 ) )  =  ( log ‘ ( 𝑥  /  1 ) ) ) | 
						
							| 167 |  | id | ⊢ ( 𝑘  =  1  →  𝑘  =  1 ) | 
						
							| 168 | 166 167 | oveq12d | ⊢ ( 𝑘  =  1  →  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 )  =  ( ( log ‘ ( 𝑥  /  1 ) )  /  1 ) ) | 
						
							| 169 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 170 |  | fz1ssnn | ⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ | 
						
							| 171 | 170 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ ) | 
						
							| 172 | 123 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 173 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  1  ≤  𝑥 ) | 
						
							| 174 |  | flge1nn | ⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 175 | 172 173 174 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 176 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 177 | 175 176 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 178 |  | eluzfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 179 | 177 178 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  1  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 180 | 152 | nnrpd | ⊢ ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑘  ∈  ℝ+ ) | 
						
							| 181 | 8 180 155 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 182 | 181 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑘 ) )  ∈  ℝ ) | 
						
							| 183 | 170 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ ) | 
						
							| 184 | 183 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 185 | 182 184 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 )  ∈  ℝ ) | 
						
							| 186 | 185 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 187 | 186 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 188 | 168 169 171 179 187 | musumsum | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑘 ) )  /  𝑘 ) )  =  ( ( log ‘ ( 𝑥  /  1 ) )  /  1 ) ) | 
						
							| 189 | 8 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ ) | 
						
							| 190 | 189 | div1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  /  1 )  =  𝑥 ) | 
						
							| 191 | 190 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( log ‘ ( 𝑥  /  1 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 192 | 191 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ ( 𝑥  /  1 ) )  /  1 )  =  ( ( log ‘ 𝑥 )  /  1 ) ) | 
						
							| 193 | 77 | div1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ 𝑥 )  /  1 )  =  ( log ‘ 𝑥 ) ) | 
						
							| 194 | 192 193 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ ( 𝑥  /  1 ) )  /  1 )  =  ( log ‘ 𝑥 ) ) | 
						
							| 195 | 194 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( ( log ‘ ( 𝑥  /  1 ) )  /  1 )  =  ( log ‘ 𝑥 ) ) | 
						
							| 196 | 164 188 195 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 197 | 196 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 198 | 107 197 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 199 | 198 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 ) )  =  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 200 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 201 | 200 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  e  ∈  ℝ ) | 
						
							| 202 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 203 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 204 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 205 | 204 | simpli | ⊢ 2  <  e | 
						
							| 206 | 202 6 200 | lttri | ⊢ ( ( 1  <  2  ∧  2  <  e )  →  1  <  e ) | 
						
							| 207 | 203 205 206 | mp2an | ⊢ 1  <  e | 
						
							| 208 | 202 200 207 | ltleii | ⊢ 1  ≤  e | 
						
							| 209 | 201 208 | jctir | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( e  ∈  ℝ  ∧  1  ≤  e ) ) | 
						
							| 210 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑅  ∈  ℝ ) | 
						
							| 211 | 19 | a1i | ⊢ ( 𝜑  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 212 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 213 |  | rphalfcl | ⊢ ( 1  ∈  ℝ+  →  ( 1  /  2 )  ∈  ℝ+ ) | 
						
							| 214 | 212 213 | ax-mp | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 215 |  | rpge0 | ⊢ ( ( 1  /  2 )  ∈  ℝ+  →  0  ≤  ( 1  /  2 ) ) | 
						
							| 216 | 214 215 | mp1i | ⊢ ( 𝜑  →  0  ≤  ( 1  /  2 ) ) | 
						
							| 217 | 20 | a1i | ⊢ ( 𝜑  →  γ  ∈  ℝ ) | 
						
							| 218 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 219 |  | emgt0 | ⊢ 0  <  γ | 
						
							| 220 | 218 20 219 | ltleii | ⊢ 0  ≤  γ | 
						
							| 221 | 220 | a1i | ⊢ ( 𝜑  →  0  ≤  γ ) | 
						
							| 222 | 22 | absge0d | ⊢ ( 𝜑  →  0  ≤  ( abs ‘ 𝐿 ) ) | 
						
							| 223 | 217 23 221 222 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( γ  +  ( abs ‘ 𝐿 ) ) ) | 
						
							| 224 | 211 25 216 223 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) ) ) | 
						
							| 225 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 226 | 31 | nncnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 227 | 226 | mullidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 1  ·  𝑚 )  =  𝑚 ) | 
						
							| 228 | 32 | rpred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 229 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  2  ∈  ℝ ) | 
						
							| 230 | 200 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  e  ∈  ℝ ) | 
						
							| 231 |  | elfzle2 | ⊢ ( 𝑚  ∈  ( 1 ... 2 )  →  𝑚  ≤  2 ) | 
						
							| 232 | 231 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  𝑚  ≤  2 ) | 
						
							| 233 | 6 200 205 | ltleii | ⊢ 2  ≤  e | 
						
							| 234 | 233 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  2  ≤  e ) | 
						
							| 235 | 228 229 230 232 234 | letrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  𝑚  ≤  e ) | 
						
							| 236 | 227 235 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 1  ·  𝑚 )  ≤  e ) | 
						
							| 237 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  1  ∈  ℝ ) | 
						
							| 238 | 237 230 32 | lemuldivd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( 1  ·  𝑚 )  ≤  e  ↔  1  ≤  ( e  /  𝑚 ) ) ) | 
						
							| 239 | 236 238 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  1  ≤  ( e  /  𝑚 ) ) | 
						
							| 240 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  ( e  /  𝑚 )  ∈  ℝ+ )  →  ( 1  ≤  ( e  /  𝑚 )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( e  /  𝑚 ) ) ) ) | 
						
							| 241 | 212 34 240 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 1  ≤  ( e  /  𝑚 )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( e  /  𝑚 ) ) ) ) | 
						
							| 242 | 239 241 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( log ‘ 1 )  ≤  ( log ‘ ( e  /  𝑚 ) ) ) | 
						
							| 243 | 225 242 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  0  ≤  ( log ‘ ( e  /  𝑚 ) ) ) | 
						
							| 244 | 35 32 243 | divge0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  0  ≤  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 245 | 28 36 244 | fsumge0 | ⊢ ( 𝜑  →  0  ≤  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 246 | 27 37 224 245 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  +  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) ) | 
						
							| 247 | 246 4 | breqtrrdi | ⊢ ( 𝜑  →  0  ≤  𝑅 ) | 
						
							| 248 | 247 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  0  ≤  𝑅 ) | 
						
							| 249 | 210 248 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 ) ) | 
						
							| 250 | 85 97 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 251 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ∈  ℝ )  →  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ∈  ℝ ) | 
						
							| 252 | 6 15 251 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ∈  ℝ ) | 
						
							| 253 | 6 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  2  ∈  ℝ ) | 
						
							| 254 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 255 | 254 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  2 ) | 
						
							| 256 | 98 | mullidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  =  𝑛 ) | 
						
							| 257 |  | fznnfl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 258 | 123 257 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 259 | 258 | simplbda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≤  𝑥 ) | 
						
							| 260 | 256 259 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  ≤  𝑥 ) | 
						
							| 261 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 262 | 57 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 263 | 261 124 262 | lemuldivd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 1  ·  𝑛 )  ≤  𝑥  ↔  1  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 264 | 260 263 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 265 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  ( 𝑥  /  𝑛 )  ∈  ℝ+ )  →  ( 1  ≤  ( 𝑥  /  𝑛 )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 266 | 212 12 265 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ≤  ( 𝑥  /  𝑛 )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 267 | 264 266 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 1 )  ≤  ( log ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 268 | 225 267 | eqbrtrrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( log ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 269 |  | rpregt0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 270 | 269 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 271 |  | divge0 | ⊢ ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ  ∧  0  ≤  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  0  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) ) | 
						
							| 272 | 13 268 270 271 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) ) | 
						
							| 273 | 253 15 255 272 | mulge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) ) ) | 
						
							| 274 | 250 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ∈  ℝ ) | 
						
							| 275 | 274 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ∈  ℝ ) | 
						
							| 276 | 97 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 277 | 276 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 278 | 262 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 279 | 252 278 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 )  ∈  ℝ ) | 
						
							| 280 | 279 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 )  ∈  ℝ ) | 
						
							| 281 | 85 97 | absmuld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  =  ( ( abs ‘ ( μ ‘ 𝑛 ) )  ·  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) ) | 
						
							| 282 | 85 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 283 | 97 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 284 | 97 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 285 |  | mule1 | ⊢ ( 𝑛  ∈  ℕ  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ≤  1 ) | 
						
							| 286 | 57 285 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( μ ‘ 𝑛 ) )  ≤  1 ) | 
						
							| 287 | 282 261 283 284 286 | lemul1ad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( μ ‘ 𝑛 ) )  ·  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  ( 1  ·  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) ) | 
						
							| 288 | 283 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 289 | 288 | mullidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  =  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 290 | 287 289 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( μ ‘ 𝑛 ) )  ·  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 291 | 281 290 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 292 | 291 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 293 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  𝐹  ⇝𝑟  𝐿 ) | 
						
							| 294 | 12 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 295 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  e  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 296 | 1 293 294 295 | mulog2sumlem1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) ) )  ≤  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 297 | 72 96 | abssubd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  𝑇 ) ) ) | 
						
							| 298 | 297 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  𝑇 ) ) ) | 
						
							| 299 | 3 | oveq2i | ⊢ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  𝑇 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) ) | 
						
							| 300 | 299 | fveq2i | ⊢ ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  𝑇 ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) ) ) | 
						
							| 301 | 298 300 | eqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  −  ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) ) ) ) | 
						
							| 302 |  | 2cnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  2  ∈  ℂ ) | 
						
							| 303 | 15 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 304 | 302 303 98 | mulassd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 )  =  ( 2  ·  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ·  𝑛 ) ) ) | 
						
							| 305 |  | rpcnne0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 306 | 305 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 307 |  | divdiv2 | ⊢ ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ·  𝑛 )  /  𝑥 ) ) | 
						
							| 308 | 63 306 110 307 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ·  𝑛 )  /  𝑥 ) ) | 
						
							| 309 |  | div23 | ⊢ ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ  ∧  𝑛  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ·  𝑛 )  /  𝑥 )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ·  𝑛 ) ) | 
						
							| 310 | 63 98 306 309 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ·  𝑛 )  /  𝑥 )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ·  𝑛 ) ) | 
						
							| 311 | 308 310 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ·  𝑛 ) ) | 
						
							| 312 | 311 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) ) )  =  ( 2  ·  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 )  ·  𝑛 ) ) ) | 
						
							| 313 | 304 312 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 )  =  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 314 | 313 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 )  =  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 315 | 296 301 314 | 3brtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ≤  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 ) ) | 
						
							| 316 | 275 277 280 292 315 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  e  ≤  ( 𝑥  /  𝑛 ) )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  ·  𝑛 ) ) | 
						
							| 317 | 274 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ∈  ℝ ) | 
						
							| 318 | 283 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 319 | 39 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  𝑅  ∈  ℝ ) | 
						
							| 320 | 291 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 321 | 72 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  𝑇  ∈  ℂ ) | 
						
							| 322 | 321 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 323 | 96 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℂ ) | 
						
							| 324 | 323 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 325 | 322 324 | readdcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( abs ‘ 𝑇 )  +  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 326 | 321 323 | abs2dif2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ≤  ( ( abs ‘ 𝑇 )  +  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) ) | 
						
							| 327 | 27 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  ∈  ℝ ) | 
						
							| 328 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 329 | 3 | fveq2i | ⊢ ( abs ‘ 𝑇 )  =  ( abs ‘ ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) ) | 
						
							| 330 | 329 322 | eqeltrrid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) )  ∈  ℝ ) | 
						
							| 331 | 65 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 332 | 331 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  ∈  ℝ ) | 
						
							| 333 | 70 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 )  ∈  ℂ ) | 
						
							| 334 | 333 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) )  ∈  ℝ ) | 
						
							| 335 | 332 334 | readdcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  +  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) )  ∈  ℝ ) | 
						
							| 336 | 331 333 | abstrid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) )  ≤  ( ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  +  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) ) ) | 
						
							| 337 | 19 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 338 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( γ  +  ( abs ‘ 𝐿 ) )  ∈  ℝ ) | 
						
							| 339 | 13 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 340 | 339 | rehalfcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 341 | 13 | sqge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 ) ) | 
						
							| 342 |  | 2pos | ⊢ 0  <  2 | 
						
							| 343 | 6 342 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 344 | 343 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 345 |  | divge0 | ⊢ ( ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  ≤  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) ) | 
						
							| 346 | 339 341 344 345 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) ) | 
						
							| 347 | 340 346 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) ) | 
						
							| 348 | 347 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  =  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) ) | 
						
							| 349 | 12 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 350 |  | ltle | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  e  ∈  ℝ )  →  ( ( 𝑥  /  𝑛 )  <  e  →  ( 𝑥  /  𝑛 )  ≤  e ) ) | 
						
							| 351 | 349 200 350 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑥  /  𝑛 )  <  e  →  ( 𝑥  /  𝑛 )  ≤  e ) ) | 
						
							| 352 | 351 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 𝑥  /  𝑛 )  ≤  e ) | 
						
							| 353 | 12 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 354 |  | logleb | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ+  ∧  e  ∈  ℝ+ )  →  ( ( 𝑥  /  𝑛 )  ≤  e  ↔  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  ( log ‘ e ) ) ) | 
						
							| 355 | 353 29 354 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( 𝑥  /  𝑛 )  ≤  e  ↔  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  ( log ‘ e ) ) ) | 
						
							| 356 | 352 355 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  ( log ‘ e ) ) | 
						
							| 357 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 358 | 356 357 | breqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  1 ) | 
						
							| 359 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 360 | 359 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  1 ) | 
						
							| 361 | 13 261 268 360 | le2sqd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  1  ↔  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 362 | 361 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  1  ↔  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 363 | 358 362 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 364 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 365 | 363 364 | breqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ≤  1 ) | 
						
							| 366 | 339 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 367 |  | 1red | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  1  ∈  ℝ ) | 
						
							| 368 | 343 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 369 |  | lediv1 | ⊢ ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ≤  1  ↔  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  ≤  ( 1  /  2 ) ) ) | 
						
							| 370 | 366 367 368 369 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  ≤  1  ↔  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  ≤  ( 1  /  2 ) ) ) | 
						
							| 371 | 365 370 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  ≤  ( 1  /  2 ) ) | 
						
							| 372 | 348 371 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  ≤  ( 1  /  2 ) ) | 
						
							| 373 | 69 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 374 | 67 373 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  +  ( abs ‘ 𝐿 ) )  ∈  ℝ ) | 
						
							| 375 | 374 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  +  ( abs ‘ 𝐿 ) )  ∈  ℝ ) | 
						
							| 376 | 68 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 377 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  𝐿  ∈  ℂ ) | 
						
							| 378 | 376 377 | abs2dif2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) )  ≤  ( ( abs ‘ ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  +  ( abs ‘ 𝐿 ) ) ) | 
						
							| 379 | 20 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  γ  ∈  ℝ ) | 
						
							| 380 | 220 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  γ ) | 
						
							| 381 | 379 13 380 268 | mulge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 382 | 67 381 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 383 | 382 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 384 | 383 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( abs ‘ ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  +  ( abs ‘ 𝐿 ) )  =  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  +  ( abs ‘ 𝐿 ) ) ) | 
						
							| 385 | 378 384 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) )  ≤  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  +  ( abs ‘ 𝐿 ) ) ) | 
						
							| 386 | 67 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 387 | 20 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  γ  ∈  ℝ ) | 
						
							| 388 | 377 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 389 | 13 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 390 | 387 219 | jctir | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( γ  ∈  ℝ  ∧  0  <  γ ) ) | 
						
							| 391 |  | lemul2 | ⊢ ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( γ  ∈  ℝ  ∧  0  <  γ ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  1  ↔  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ≤  ( γ  ·  1 ) ) ) | 
						
							| 392 | 389 367 390 391 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  ≤  1  ↔  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ≤  ( γ  ·  1 ) ) ) | 
						
							| 393 | 358 392 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ≤  ( γ  ·  1 ) ) | 
						
							| 394 | 20 | recni | ⊢ γ  ∈  ℂ | 
						
							| 395 | 394 | mulridi | ⊢ ( γ  ·  1 )  =  γ | 
						
							| 396 | 393 395 | breqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ≤  γ ) | 
						
							| 397 | 386 387 388 396 | leadd1dd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  +  ( abs ‘ 𝐿 ) )  ≤  ( γ  +  ( abs ‘ 𝐿 ) ) ) | 
						
							| 398 | 334 375 338 385 397 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) )  ≤  ( γ  +  ( abs ‘ 𝐿 ) ) ) | 
						
							| 399 | 332 334 337 338 372 398 | le2addd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( abs ‘ ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 ) )  +  ( abs ‘ ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) )  ≤  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) ) ) | 
						
							| 400 | 330 335 327 336 399 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( ( ( log ‘ ( 𝑥  /  𝑛 ) ) ↑ 2 )  /  2 )  +  ( ( γ  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  −  𝐿 ) ) )  ≤  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) ) ) | 
						
							| 401 | 329 400 | eqbrtrid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ 𝑇 )  ≤  ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) ) ) | 
						
							| 402 | 87 93 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 403 | 86 402 | fsumrecl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 404 | 403 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 405 | 87 91 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 406 | 87 130 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 407 | 406 | mullidd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  ·  𝑚 )  =  𝑚 ) | 
						
							| 408 |  | fznnfl | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ↔  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 409 | 349 408 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ↔  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 410 | 409 | simplbda | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 411 | 407 410 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  ·  𝑚 )  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 412 |  | 1red | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  1  ∈  ℝ ) | 
						
							| 413 | 349 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 414 | 117 | rpregt0d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) ) | 
						
							| 415 | 87 414 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) ) | 
						
							| 416 |  | lemuldiv | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) )  →  ( ( 1  ·  𝑚 )  ≤  ( 𝑥  /  𝑛 )  ↔  1  ≤  ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) | 
						
							| 417 | 412 413 415 416 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( 1  ·  𝑚 )  ≤  ( 𝑥  /  𝑛 )  ↔  1  ≤  ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) | 
						
							| 418 | 411 417 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  1  ≤  ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) | 
						
							| 419 | 87 90 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 420 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ+ )  →  ( 1  ≤  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) | 
						
							| 421 | 212 419 420 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  ≤  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) | 
						
							| 422 | 418 421 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( log ‘ 1 )  ≤  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) | 
						
							| 423 | 225 422 | eqbrtrrid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  0  ≤  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) | 
						
							| 424 |  | divge0 | ⊢ ( ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ  ∧  0  ≤  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) )  ∧  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) )  →  0  ≤  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 425 | 405 423 415 424 | syl21anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  0  ≤  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 426 | 86 402 425 | fsumge0 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 427 | 426 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  0  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 428 | 404 427 | absidd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 429 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 430 | 349 | flcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℤ ) | 
						
							| 431 | 430 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℤ ) | 
						
							| 432 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 433 | 432 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  2  ∈  ℤ ) | 
						
							| 434 | 349 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 435 | 200 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  e  ∈  ℝ ) | 
						
							| 436 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 437 | 436 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  3  ∈  ℝ ) | 
						
							| 438 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 𝑥  /  𝑛 )  <  e ) | 
						
							| 439 | 204 | simpri | ⊢ e  <  3 | 
						
							| 440 | 439 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  e  <  3 ) | 
						
							| 441 | 434 435 437 438 440 | lttrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 𝑥  /  𝑛 )  <  3 ) | 
						
							| 442 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 443 |  | fllt | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  3  ∈  ℤ )  →  ( ( 𝑥  /  𝑛 )  <  3  ↔  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  <  3 ) ) | 
						
							| 444 | 434 442 443 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( 𝑥  /  𝑛 )  <  3  ↔  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  <  3 ) ) | 
						
							| 445 | 441 444 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  <  3 ) | 
						
							| 446 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 447 | 445 446 | breqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  <  ( 2  +  1 ) ) | 
						
							| 448 |  | zleltp1 | ⊢ ( ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ≤  2  ↔  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  <  ( 2  +  1 ) ) ) | 
						
							| 449 | 431 432 448 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ≤  2  ↔  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  <  ( 2  +  1 ) ) ) | 
						
							| 450 | 447 449 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ≤  2 ) | 
						
							| 451 |  | eluz2 | ⊢ ( 2  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ↔  ( ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℤ  ∧  2  ∈  ℤ  ∧  ( ⌊ ‘ ( 𝑥  /  𝑛 ) )  ≤  2 ) ) | 
						
							| 452 | 431 433 450 451 | syl3anbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  2  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 453 |  | fzss2 | ⊢ ( 2  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ⊆  ( 1 ... 2 ) ) | 
						
							| 454 | 452 453 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ⊆  ( 1 ... 2 ) ) | 
						
							| 455 | 454 | sselda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ( 1 ... 2 ) ) | 
						
							| 456 | 36 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 457 | 455 456 | syldan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 458 | 429 457 | fsumrecl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 459 | 93 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ℕ )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 460 | 87 459 | sylan2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 461 | 352 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 𝑥  /  𝑛 )  ≤  e ) | 
						
							| 462 | 434 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 463 | 200 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  e  ∈  ℝ ) | 
						
							| 464 | 32 | rpregt0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) ) | 
						
							| 465 | 464 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) ) | 
						
							| 466 |  | lediv1 | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  e  ∈  ℝ  ∧  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) )  →  ( ( 𝑥  /  𝑛 )  ≤  e  ↔  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ≤  ( e  /  𝑚 ) ) ) | 
						
							| 467 | 462 463 465 466 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( 𝑥  /  𝑛 )  ≤  e  ↔  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ≤  ( e  /  𝑚 ) ) ) | 
						
							| 468 | 461 467 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ≤  ( e  /  𝑚 ) ) | 
						
							| 469 | 90 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 470 | 30 469 | sylan2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 471 | 34 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( e  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 472 | 470 471 | logled | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( ( 𝑥  /  𝑛 )  /  𝑚 )  ≤  ( e  /  𝑚 )  ↔  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ≤  ( log ‘ ( e  /  𝑚 ) ) ) ) | 
						
							| 473 | 468 472 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ≤  ( log ‘ ( e  /  𝑚 ) ) ) | 
						
							| 474 | 91 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 475 | 30 474 | sylan2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 476 | 35 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( log ‘ ( e  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 477 |  | lediv1 | ⊢ ( ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ  ∧  ( log ‘ ( e  /  𝑚 ) )  ∈  ℝ  ∧  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ≤  ( log ‘ ( e  /  𝑚 ) )  ↔  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ≤  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) ) | 
						
							| 478 | 475 476 465 477 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ≤  ( log ‘ ( e  /  𝑚 ) )  ↔  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ≤  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) ) | 
						
							| 479 | 473 478 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ≤  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 480 | 455 479 | syldan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ≤  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 481 | 429 460 457 480 | fsumle | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 482 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( 1 ... 2 )  ∈  Fin ) | 
						
							| 483 | 244 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  ∧  𝑚  ∈  ( 1 ... 2 ) )  →  0  ≤  ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 484 | 482 456 483 454 | fsumless | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 )  ≤  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 485 | 404 458 328 481 484 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 )  ≤  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 486 | 428 485 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) )  ≤  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) | 
						
							| 487 | 322 324 327 328 401 486 | le2addd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( abs ‘ 𝑇 )  +  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ≤  ( ( ( 1  /  2 )  +  ( γ  +  ( abs ‘ 𝐿 ) ) )  +  Σ 𝑚  ∈  ( 1 ... 2 ) ( ( log ‘ ( e  /  𝑚 ) )  /  𝑚 ) ) ) | 
						
							| 488 | 487 4 | breqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( ( abs ‘ 𝑇 )  +  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ≤  𝑅 ) | 
						
							| 489 | 318 325 319 326 488 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  ≤  𝑅 ) | 
						
							| 490 | 317 318 319 320 489 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( 𝑥  /  𝑛 )  <  e )  →  ( abs ‘ ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) ) )  ≤  𝑅 ) | 
						
							| 491 | 8 209 249 250 252 273 316 490 | fsumharmonic | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  ( ( log ‘ e )  +  1 ) ) ) ) | 
						
							| 492 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  2  ∈  ℂ ) | 
						
							| 493 | 7 492 303 | fsummulc2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) ) ) | 
						
							| 494 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 495 | 357 | oveq1i | ⊢ ( ( log ‘ e )  +  1 )  =  ( 1  +  1 ) | 
						
							| 496 | 494 495 | eqtr4i | ⊢ 2  =  ( ( log ‘ e )  +  1 ) | 
						
							| 497 | 496 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  2  =  ( ( log ‘ e )  +  1 ) ) | 
						
							| 498 | 497 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑅  ·  2 )  =  ( 𝑅  ·  ( ( log ‘ e )  +  1 ) ) ) | 
						
							| 499 | 493 498 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  ( ( log ‘ e )  +  1 ) ) ) ) | 
						
							| 500 | 491 499 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 ) )  ≤  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) ) | 
						
							| 501 | 500 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  ·  ( 𝑇  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( log ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  /  𝑚 ) ) )  /  𝑛 ) )  ≤  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) ) | 
						
							| 502 | 199 501 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) )  ≤  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) ) | 
						
							| 503 | 56 | leabsd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) )  ≤  ( abs ‘ ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) ) ) | 
						
							| 504 | 503 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) )  ≤  ( abs ‘ ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) ) ) | 
						
							| 505 | 80 81 84 502 504 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑥 ) )  +  ( 𝑅  ·  2 ) ) ) ) | 
						
							| 506 | 5 55 56 78 505 | o1le | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  𝑇 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) |