| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logdivsum.1 | ⊢ 𝐹  =  ( 𝑦  ∈  ℝ+  ↦  ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 )  /  𝑖 )  −  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 2 |  | ioorp | ⊢ ( 0 (,) +∞ )  =  ℝ+ | 
						
							| 3 | 2 | eqcomi | ⊢ ℝ+  =  ( 0 (,) +∞ ) | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 6 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →  e  ∈  ℝ ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | epos | ⊢ 0  <  e | 
						
							| 10 | 8 6 9 | ltleii | ⊢ 0  ≤  e | 
						
							| 11 | 10 | a1i | ⊢ ( ⊤  →  0  ≤  e ) | 
						
							| 12 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 13 |  | addge02 | ⊢ ( ( 1  ∈  ℝ  ∧  e  ∈  ℝ )  →  ( 0  ≤  e  ↔  1  ≤  ( e  +  1 ) ) ) | 
						
							| 14 | 12 6 13 | mp2an | ⊢ ( 0  ≤  e  ↔  1  ≤  ( e  +  1 ) ) | 
						
							| 15 | 11 14 | sylib | ⊢ ( ⊤  →  1  ≤  ( e  +  1 ) ) | 
						
							| 16 | 8 | a1i | ⊢ ( ⊤  →  0  ∈  ℝ ) | 
						
							| 17 |  | relogcl | ⊢ ( 𝑦  ∈  ℝ+  →  ( log ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( log ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 19 | 18 | resqcld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( ( log ‘ 𝑦 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 20 | 19 | rehalfcld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 21 |  | rerpdivcl | ⊢ ( ( ( log ‘ 𝑦 )  ∈  ℝ  ∧  𝑦  ∈  ℝ+ )  →  ( ( log ‘ 𝑦 )  /  𝑦 )  ∈  ℝ ) | 
						
							| 22 | 17 21 | mpancom | ⊢ ( 𝑦  ∈  ℝ+  →  ( ( log ‘ 𝑦 )  /  𝑦 )  ∈  ℝ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( ( log ‘ 𝑦 )  /  𝑦 )  ∈  ℝ ) | 
						
							| 24 |  | nnrp | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ+ ) | 
						
							| 25 | 24 23 | sylan2 | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℕ )  →  ( ( log ‘ 𝑦 )  /  𝑦 )  ∈  ℝ ) | 
						
							| 26 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 27 | 26 | a1i | ⊢ ( ⊤  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 28 |  | cnelprrecn | ⊢ ℂ  ∈  { ℝ ,  ℂ } | 
						
							| 29 | 28 | a1i | ⊢ ( ⊤  →  ℂ  ∈  { ℝ ,  ℂ } ) | 
						
							| 30 | 18 | recnd | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( log ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 31 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( 1  /  𝑦 )  ∈  V ) | 
						
							| 32 |  | sqcl | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥 ↑ 2 )  ∈  ℂ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 𝑥 ↑ 2 )  ∈  ℂ ) | 
						
							| 34 | 33 | halfcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( ( 𝑥 ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 35 |  | simpr | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 36 |  | relogf1o | ⊢ ( log  ↾  ℝ+ ) : ℝ+ –1-1-onto→ ℝ | 
						
							| 37 |  | f1of | ⊢ ( ( log  ↾  ℝ+ ) : ℝ+ –1-1-onto→ ℝ  →  ( log  ↾  ℝ+ ) : ℝ+ ⟶ ℝ ) | 
						
							| 38 | 36 37 | mp1i | ⊢ ( ⊤  →  ( log  ↾  ℝ+ ) : ℝ+ ⟶ ℝ ) | 
						
							| 39 | 38 | feqmptd | ⊢ ( ⊤  →  ( log  ↾  ℝ+ )  =  ( 𝑦  ∈  ℝ+  ↦  ( ( log  ↾  ℝ+ ) ‘ 𝑦 ) ) ) | 
						
							| 40 |  | fvres | ⊢ ( 𝑦  ∈  ℝ+  →  ( ( log  ↾  ℝ+ ) ‘ 𝑦 )  =  ( log ‘ 𝑦 ) ) | 
						
							| 41 | 40 | mpteq2ia | ⊢ ( 𝑦  ∈  ℝ+  ↦  ( ( log  ↾  ℝ+ ) ‘ 𝑦 ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) ) | 
						
							| 42 | 39 41 | eqtrdi | ⊢ ( ⊤  →  ( log  ↾  ℝ+ )  =  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ⊤  →  ( ℝ  D  ( log  ↾  ℝ+ ) )  =  ( ℝ  D  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) ) ) ) | 
						
							| 44 |  | dvrelog | ⊢ ( ℝ  D  ( log  ↾  ℝ+ ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( 1  /  𝑦 ) ) | 
						
							| 45 | 43 44 | eqtr3di | ⊢ ( ⊤  →  ( ℝ  D  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( 1  /  𝑦 ) ) ) | 
						
							| 46 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 2  ·  𝑥 )  ∈  V ) | 
						
							| 47 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 48 |  | dvexp | ⊢ ( 2  ∈  ℕ  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 2 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 2  ·  ( 𝑥 ↑ ( 2  −  1 ) ) ) ) ) | 
						
							| 49 | 47 48 | mp1i | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 2 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 2  ·  ( 𝑥 ↑ ( 2  −  1 ) ) ) ) ) | 
						
							| 50 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 51 | 50 | oveq2i | ⊢ ( 𝑥 ↑ ( 2  −  1 ) )  =  ( 𝑥 ↑ 1 ) | 
						
							| 52 |  | exp1 | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥 ↑ 1 )  =  𝑥 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 𝑥 ↑ 1 )  =  𝑥 ) | 
						
							| 54 | 51 53 | eqtrid | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 𝑥 ↑ ( 2  −  1 ) )  =  𝑥 ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 2  ·  ( 𝑥 ↑ ( 2  −  1 ) ) )  =  ( 2  ·  𝑥 ) ) | 
						
							| 56 | 55 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( 2  ·  ( 𝑥 ↑ ( 2  −  1 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 2  ·  𝑥 ) ) ) | 
						
							| 57 | 49 56 | eqtrd | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 2 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 2  ·  𝑥 ) ) ) | 
						
							| 58 |  | 2cnd | ⊢ ( ⊤  →  2  ∈  ℂ ) | 
						
							| 59 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 60 | 59 | a1i | ⊢ ( ⊤  →  2  ≠  0 ) | 
						
							| 61 | 29 33 46 57 58 60 | dvmptdivc | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( ( 𝑥 ↑ 2 )  /  2 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 2  ·  𝑥 )  /  2 ) ) ) | 
						
							| 62 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 63 |  | divcan3 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 2  ·  𝑥 )  /  2 )  =  𝑥 ) | 
						
							| 64 | 62 59 63 | mp3an23 | ⊢ ( 𝑥  ∈  ℂ  →  ( ( 2  ·  𝑥 )  /  2 )  =  𝑥 ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( ( 2  ·  𝑥 )  /  2 )  =  𝑥 ) | 
						
							| 66 | 65 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( ( 2  ·  𝑥 )  /  2 ) )  =  ( 𝑥  ∈  ℂ  ↦  𝑥 ) ) | 
						
							| 67 | 61 66 | eqtrd | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( ( 𝑥 ↑ 2 )  /  2 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  𝑥 ) ) | 
						
							| 68 |  | oveq1 | ⊢ ( 𝑥  =  ( log ‘ 𝑦 )  →  ( 𝑥 ↑ 2 )  =  ( ( log ‘ 𝑦 ) ↑ 2 ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝑥  =  ( log ‘ 𝑦 )  →  ( ( 𝑥 ↑ 2 )  /  2 )  =  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) ) | 
						
							| 70 |  | id | ⊢ ( 𝑥  =  ( log ‘ 𝑦 )  →  𝑥  =  ( log ‘ 𝑦 ) ) | 
						
							| 71 | 27 29 30 31 34 35 45 67 69 70 | dvmptco | ⊢ ( ⊤  →  ( ℝ  D  ( 𝑦  ∈  ℝ+  ↦  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  ·  ( 1  /  𝑦 ) ) ) ) | 
						
							| 72 |  | rpcn | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ∈  ℂ ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ∈  ℂ ) | 
						
							| 74 |  | rpne0 | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ≠  0 ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ≠  0 ) | 
						
							| 76 | 30 73 75 | divrecd | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℝ+ )  →  ( ( log ‘ 𝑦 )  /  𝑦 )  =  ( ( log ‘ 𝑦 )  ·  ( 1  /  𝑦 ) ) ) | 
						
							| 77 | 76 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  𝑦 ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  ·  ( 1  /  𝑦 ) ) ) ) | 
						
							| 78 | 71 77 | eqtr4d | ⊢ ( ⊤  →  ( ℝ  D  ( 𝑦  ∈  ℝ+  ↦  ( ( ( log ‘ 𝑦 ) ↑ 2 )  /  2 ) ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  𝑦 ) ) ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑦  =  𝑖  →  ( log ‘ 𝑦 )  =  ( log ‘ 𝑖 ) ) | 
						
							| 80 |  | id | ⊢ ( 𝑦  =  𝑖  →  𝑦  =  𝑖 ) | 
						
							| 81 | 79 80 | oveq12d | ⊢ ( 𝑦  =  𝑖  →  ( ( log ‘ 𝑦 )  /  𝑦 )  =  ( ( log ‘ 𝑖 )  /  𝑖 ) ) | 
						
							| 82 |  | simp3r | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  𝑦  ≤  𝑖 ) | 
						
							| 83 |  | simp2l | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 84 | 83 | rpred | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 85 |  | simp3l | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  e  ≤  𝑦 ) | 
						
							| 86 |  | simp2r | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  𝑖  ∈  ℝ+ ) | 
						
							| 87 | 86 | rpred | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 88 | 6 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  e  ∈  ℝ ) | 
						
							| 89 | 88 84 87 85 82 | letrd | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  e  ≤  𝑖 ) | 
						
							| 90 |  | logdivle | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  e  ≤  𝑦 )  ∧  ( 𝑖  ∈  ℝ  ∧  e  ≤  𝑖 ) )  →  ( 𝑦  ≤  𝑖  ↔  ( ( log ‘ 𝑖 )  /  𝑖 )  ≤  ( ( log ‘ 𝑦 )  /  𝑦 ) ) ) | 
						
							| 91 | 84 85 87 89 90 | syl22anc | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  ( 𝑦  ≤  𝑖  ↔  ( ( log ‘ 𝑖 )  /  𝑖 )  ≤  ( ( log ‘ 𝑦 )  /  𝑦 ) ) ) | 
						
							| 92 | 82 91 | mpbid | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑖  ∈  ℝ+ )  ∧  ( e  ≤  𝑦  ∧  𝑦  ≤  𝑖 ) )  →  ( ( log ‘ 𝑖 )  /  𝑖 )  ≤  ( ( log ‘ 𝑦 )  /  𝑦 ) ) | 
						
							| 93 | 72 | cxp1d | ⊢ ( 𝑦  ∈  ℝ+  →  ( 𝑦 ↑𝑐 1 )  =  𝑦 ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝑦  ∈  ℝ+  →  ( ( log ‘ 𝑦 )  /  ( 𝑦 ↑𝑐 1 ) )  =  ( ( log ‘ 𝑦 )  /  𝑦 ) ) | 
						
							| 95 | 94 | mpteq2ia | ⊢ ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  ( 𝑦 ↑𝑐 1 ) ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  𝑦 ) ) | 
						
							| 96 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 97 |  | cxploglim | ⊢ ( 1  ∈  ℝ+  →  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  ( 𝑦 ↑𝑐 1 ) ) )  ⇝𝑟  0 ) | 
						
							| 98 | 96 97 | mp1i | ⊢ ( ⊤  →  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  ( 𝑦 ↑𝑐 1 ) ) )  ⇝𝑟  0 ) | 
						
							| 99 | 95 98 | eqbrtrrid | ⊢ ( ⊤  →  ( 𝑦  ∈  ℝ+  ↦  ( ( log ‘ 𝑦 )  /  𝑦 ) )  ⇝𝑟  0 ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( log ‘ 𝑦 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 101 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 102 | 100 101 | oveq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( log ‘ 𝑦 )  /  𝑦 )  =  ( ( log ‘ 𝐴 )  /  𝐴 ) ) | 
						
							| 103 | 3 4 5 7 15 16 20 23 25 78 81 92 1 99 102 | dvfsumrlim3 | ⊢ ( ⊤  →  ( 𝐹 : ℝ+ ⟶ ℝ  ∧  𝐹  ∈  dom   ⇝𝑟   ∧  ( ( 𝐹  ⇝𝑟  𝐿  ∧  𝐴  ∈  ℝ+  ∧  e  ≤  𝐴 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  𝐿 ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) ) | 
						
							| 104 | 103 | mptru | ⊢ ( 𝐹 : ℝ+ ⟶ ℝ  ∧  𝐹  ∈  dom   ⇝𝑟   ∧  ( ( 𝐹  ⇝𝑟  𝐿  ∧  𝐴  ∈  ℝ+  ∧  e  ≤  𝐴 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  𝐿 ) )  ≤  ( ( log ‘ 𝐴 )  /  𝐴 ) ) ) |