| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 2 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 3 |  | o1const | ⊢ ( ( ℝ+  ⊆  ℝ  ∧  1  ∈  ℂ )  →  ( 𝑥  ∈  ℝ+  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝑥  ∈  ℝ+  ↦  1 )  ∈  𝑂(1) | 
						
							| 5 |  | 1cnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  1  ∈  ℂ ) | 
						
							| 6 |  | fzfid | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 7 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 9 |  | mucl | ⊢ ( 𝑛  ∈  ℕ  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 11 | 10 | zred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 12 | 11 8 | nndivred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 13 | 7 | nnrpd | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 14 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 15 | 13 14 | sylan2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 16 | 15 | relogcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 17 | 12 16 | remulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 18 | 17 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 19 | 6 18 | fsumcl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 21 |  | mulogsumlem | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1) | 
						
							| 22 |  | sumex | ⊢ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  V | 
						
							| 23 | 22 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  V ) | 
						
							| 24 | 21 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1) ) | 
						
							| 25 | 23 24 | o1mptrcl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 26 | 5 20 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( 1  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 27 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 28 |  | fz1ssnn | ⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ℕ ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 31 | 30 9 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 32 | 31 | zred | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 33 | 32 30 | nndivred | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 34 | 33 | recnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 35 |  | fzfid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 36 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 38 | 37 | nnrpd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 39 | 38 | rpcnne0d | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) ) | 
						
							| 40 |  | reccl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 )  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 42 | 35 41 | fsumcl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  𝑥  ∈  ℝ+ ) | 
						
							| 44 | 43 13 14 | syl2an | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 45 | 44 | relogcld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 46 | 45 | recnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 47 | 34 42 46 | subdid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 48 | 47 | sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 49 |  | fzfid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 50 | 34 42 | mulcld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 51 | 18 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 52 | 49 50 51 | fsumsub | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( 1  /  𝑘 )  =  ( 1  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝑘  =  ( 𝑛  ·  𝑚 )  →  ( ( μ ‘ 𝑛 )  ·  ( 1  /  𝑘 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 55 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 57 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 }  ⊆  ℕ | 
						
							| 58 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) | 
						
							| 59 | 57 58 | sselid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  𝑛  ∈  ℕ ) | 
						
							| 60 | 59 9 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( μ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 61 | 60 | zcnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 62 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 64 | 63 | nnrecred | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 65 | 64 | recnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑘 )  ∈  ℂ ) | 
						
							| 66 | 65 | adantrr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( 1  /  𝑘 )  ∈  ℂ ) | 
						
							| 67 | 61 66 | mulcld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  ( 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ) )  →  ( ( μ ‘ 𝑛 )  ·  ( 1  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 68 | 54 56 67 | dvdsflsumcom | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  ( 1  /  𝑘 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 69 |  | oveq2 | ⊢ ( 𝑘  =  1  →  ( 1  /  𝑘 )  =  ( 1  /  1 ) ) | 
						
							| 70 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 71 | 69 70 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( 1  /  𝑘 )  =  1 ) | 
						
							| 72 |  | flge1nn | ⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 73 | 55 72 | sylan | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 74 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 75 | 73 74 | eleqtrdi | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 76 |  | eluzfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  1  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 78 | 71 49 29 77 65 | musumsum | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑘 } ( ( μ ‘ 𝑛 )  ·  ( 1  /  𝑘 ) )  =  1 ) | 
						
							| 79 | 31 | zcnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( μ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 81 | 30 | adantr | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 82 | 81 | nnrpd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 83 | 82 | rpcnne0d | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 84 |  | divdiv1 | ⊢ ( ( ( μ ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 )  ∧  ( 𝑚  ∈  ℂ  ∧  𝑚  ≠  0 ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  /  𝑚 )  =  ( ( μ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 85 | 80 83 39 84 | syl3anc | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  /  𝑚 )  =  ( ( μ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) ) ) | 
						
							| 86 | 34 | adantr | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( μ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 87 | 37 | nncnd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 88 | 37 | nnne0d | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ≠  0 ) | 
						
							| 89 | 86 87 88 | divrecd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  /  𝑚 )  =  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 90 |  | nnmulcl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( 𝑛  ·  𝑚 )  ∈  ℕ ) | 
						
							| 91 | 30 36 90 | syl2an | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑛  ·  𝑚 )  ∈  ℕ ) | 
						
							| 92 | 91 | nncnd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑛  ·  𝑚 )  ∈  ℂ ) | 
						
							| 93 | 91 | nnne0d | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑛  ·  𝑚 )  ≠  0 ) | 
						
							| 94 | 80 92 93 | divrecd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( μ ‘ 𝑛 )  /  ( 𝑛  ·  𝑚 ) )  =  ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) ) ) | 
						
							| 95 | 85 89 94 | 3eqtr3rd | ⊢ ( ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) )  =  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 96 | 95 | sumeq2dv | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 97 | 35 34 41 | fsummulc2 | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 98 | 96 97 | eqtr4d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) )  =  ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) ) ) | 
						
							| 99 | 98 | sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( μ ‘ 𝑛 )  ·  ( 1  /  ( 𝑛  ·  𝑚 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) ) ) | 
						
							| 100 | 68 78 99 | 3eqtr3rd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  =  1 ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( 1  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 102 | 48 52 101 | 3eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( 1  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( 1  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 104 | 25 26 27 103 | o1eq | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ℝ+  ↦  ( 1  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1) ) ) | 
						
							| 105 | 21 104 | mpbii | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  𝑂(1) ) | 
						
							| 106 | 5 20 105 | o1dif | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  1 )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  𝑂(1) ) ) | 
						
							| 107 | 4 106 | mpbii | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 108 | 107 | mptru | ⊢ ( 𝑥  ∈  ℝ+  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  𝑂(1) |