Metamath Proof Explorer


Theorem mulogsum

Description: Asymptotic formula for sum_ n <_ x , ( mmu ( n ) / n ) log ( x / n ) = O(1) . Equation 10.2.6 of Shapiro, p. 406. (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mulogsum ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1)

Proof

Step Hyp Ref Expression
1 rpssre + ⊆ ℝ
2 ax-1cn 1 ∈ ℂ
3 o1const ( ( ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) )
4 1 2 3 mp2an ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1)
5 1cnd ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ )
6 fzfid ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin )
7 elfznn ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ )
8 7 adantl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ )
9 mucl ( 𝑛 ∈ ℕ → ( μ ‘ 𝑛 ) ∈ ℤ )
10 8 9 syl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ )
11 10 zred ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ )
12 11 8 nndivred ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ )
13 7 nnrpd ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ )
14 rpdivcl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
15 13 14 sylan2 ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
16 15 relogcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
17 12 16 remulcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ )
18 17 recnd ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
19 6 18 fsumcl ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
20 19 adantl ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
21 mulogsumlem ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1)
22 sumex Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ V
23 22 a1i ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ V )
24 21 a1i ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) )
25 23 24 o1mptrcl ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ )
26 5 20 subcld ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ )
27 1red ( ⊤ → 1 ∈ ℝ )
28 fz1ssnn ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ
29 28 a1i ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ )
30 29 sselda ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ )
31 30 9 syl ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ )
32 31 zred ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ )
33 32 30 nndivred ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ )
34 33 recnd ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ )
35 fzfid ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin )
36 elfznn ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ )
37 36 adantl ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ )
38 37 nnrpd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℝ+ )
39 38 rpcnne0d ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) )
40 reccl ( ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) → ( 1 / 𝑚 ) ∈ ℂ )
41 39 40 syl ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 1 / 𝑚 ) ∈ ℂ )
42 35 41 fsumcl ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ∈ ℂ )
43 simpl ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℝ+ )
44 43 13 14 syl2an ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
45 44 relogcld ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
46 45 recnd ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ )
47 34 42 46 subdid ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
48 47 sumeq2dv ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
49 fzfid ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin )
50 34 42 mulcld ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) ∈ ℂ )
51 18 adantlr ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
52 49 50 51 fsumsub ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
53 oveq2 ( 𝑘 = ( 𝑛 · 𝑚 ) → ( 1 / 𝑘 ) = ( 1 / ( 𝑛 · 𝑚 ) ) )
54 53 oveq2d ( 𝑘 = ( 𝑛 · 𝑚 ) → ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) = ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) )
55 rpre ( 𝑥 ∈ ℝ+𝑥 ∈ ℝ )
56 55 adantr ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℝ )
57 ssrab2 { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ⊆ ℕ
58 simprr ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ) ) → 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } )
59 57 58 sselid ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ) ) → 𝑛 ∈ ℕ )
60 59 9 syl ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ) ) → ( μ ‘ 𝑛 ) ∈ ℤ )
61 60 zcnd ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ) ) → ( μ ‘ 𝑛 ) ∈ ℂ )
62 elfznn ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ℕ )
63 62 adantl ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ )
64 63 nnrecred ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ )
65 64 recnd ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑘 ) ∈ ℂ )
66 65 adantrr ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ) ) → ( 1 / 𝑘 ) ∈ ℂ )
67 61 66 mulcld ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ) ) → ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) ∈ ℂ )
68 54 56 67 dvdsflsumcom ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) )
69 oveq2 ( 𝑘 = 1 → ( 1 / 𝑘 ) = ( 1 / 1 ) )
70 1div1e1 ( 1 / 1 ) = 1
71 69 70 eqtrdi ( 𝑘 = 1 → ( 1 / 𝑘 ) = 1 )
72 flge1nn ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ )
73 55 72 sylan ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ )
74 nnuz ℕ = ( ℤ ‘ 1 )
75 73 74 eleqtrdi ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ ‘ 1 ) )
76 eluzfz1 ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )
77 75 76 syl ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )
78 71 49 29 77 65 musumsum ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦𝑘 } ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) = 1 )
79 31 zcnd ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ )
80 79 adantr ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ )
81 30 adantr ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑛 ∈ ℕ )
82 81 nnrpd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑛 ∈ ℝ+ )
83 82 rpcnne0d ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) )
84 divdiv1 ( ( ( μ ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) / 𝑚 ) = ( ( μ ‘ 𝑛 ) / ( 𝑛 · 𝑚 ) ) )
85 80 83 39 84 syl3anc ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) / 𝑚 ) = ( ( μ ‘ 𝑛 ) / ( 𝑛 · 𝑚 ) ) )
86 34 adantr ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ )
87 37 nncnd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℂ )
88 37 nnne0d ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ≠ 0 )
89 86 87 88 divrecd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) / 𝑚 ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) )
90 nnmulcl ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑛 · 𝑚 ) ∈ ℕ )
91 30 36 90 syl2an ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℕ )
92 91 nncnd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℂ )
93 91 nnne0d ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 · 𝑚 ) ≠ 0 )
94 80 92 93 divrecd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) / ( 𝑛 · 𝑚 ) ) = ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) )
95 85 89 94 3eqtr3rd ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) )
96 95 sumeq2dv ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) )
97 35 34 41 fsummulc2 ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) )
98 96 97 eqtr4d ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) )
99 98 sumeq2dv ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) )
100 68 78 99 3eqtr3rd ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) = 1 )
101 100 oveq1d ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
102 48 52 101 3eqtrd ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
103 102 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
104 25 26 27 103 o1eq ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ) )
105 21 104 mpbii ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) )
106 5 20 105 o1dif ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1) ) )
107 4 106 mpbii ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1) )
108 107 mptru ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1)