| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  | 
						
							| 2 |  | elfznn |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 |  | mucl |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 | 5 | zred |  | 
						
							| 7 | 6 3 | nndivred |  | 
						
							| 8 | 7 | recnd |  | 
						
							| 9 | 1 8 | fsumcl |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 |  | emre |  | 
						
							| 12 | 11 | recni |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | mudivsum |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 |  | rpssre |  | 
						
							| 17 |  | o1const |  | 
						
							| 18 | 16 12 17 | mp2an |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 10 13 15 19 | o1mul2 |  | 
						
							| 21 |  | fzfid |  | 
						
							| 22 |  | elfznn |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 23 | nnrecred |  | 
						
							| 25 | 21 24 | fsumrecl |  | 
						
							| 26 | 2 | nnrpd |  | 
						
							| 27 |  | rpdivcl |  | 
						
							| 28 | 26 27 | sylan2 |  | 
						
							| 29 | 28 | relogcld |  | 
						
							| 30 | 25 29 | resubcld |  | 
						
							| 31 | 7 30 | remulcld |  | 
						
							| 32 | 1 31 | fsumrecl |  | 
						
							| 33 | 32 | recnd |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | mulcl |  | 
						
							| 36 | 9 12 35 | sylancl |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 |  | nnrecre |  | 
						
							| 39 | 38 | recnd |  | 
						
							| 40 | 23 39 | syl |  | 
						
							| 41 | 21 40 | fsumcl |  | 
						
							| 42 | 29 | recnd |  | 
						
							| 43 | 41 42 | subcld |  | 
						
							| 44 | 8 43 | mulcld |  | 
						
							| 45 |  | mulcl |  | 
						
							| 46 | 8 12 45 | sylancl |  | 
						
							| 47 | 1 44 46 | fsumsub |  | 
						
							| 48 | 12 | a1i |  | 
						
							| 49 | 41 42 48 | subsub4d |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 8 43 48 | subdid |  | 
						
							| 52 | 50 51 | eqtr3d |  | 
						
							| 53 | 52 | sumeq2dv |  | 
						
							| 54 | 12 | a1i |  | 
						
							| 55 | 1 54 8 | fsummulc1 |  | 
						
							| 56 | 55 | oveq2d |  | 
						
							| 57 | 47 53 56 | 3eqtr4d |  | 
						
							| 58 | 57 | mpteq2ia |  | 
						
							| 59 | 16 | a1i |  | 
						
							| 60 | 42 48 | addcld |  | 
						
							| 61 | 41 60 | subcld |  | 
						
							| 62 | 8 61 | mulcld |  | 
						
							| 63 | 1 62 | fsumcl |  | 
						
							| 64 | 63 | adantl |  | 
						
							| 65 |  | 1red |  | 
						
							| 66 | 63 | abscld |  | 
						
							| 67 | 62 | abscld |  | 
						
							| 68 | 1 67 | fsumrecl |  | 
						
							| 69 |  | 1red |  | 
						
							| 70 | 1 62 | fsumabs |  | 
						
							| 71 |  | rprege0 |  | 
						
							| 72 |  | flge0nn0 |  | 
						
							| 73 | 71 72 | syl |  | 
						
							| 74 | 73 | nn0red |  | 
						
							| 75 |  | rerpdivcl |  | 
						
							| 76 | 74 75 | mpancom |  | 
						
							| 77 |  | rpreccl |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 | 78 | rpred |  | 
						
							| 80 | 8 | abscld |  | 
						
							| 81 | 3 | nnrecred |  | 
						
							| 82 | 61 | abscld |  | 
						
							| 83 |  | id |  | 
						
							| 84 |  | rpdivcl |  | 
						
							| 85 | 26 83 84 | syl2anr |  | 
						
							| 86 | 85 | rpred |  | 
						
							| 87 | 8 | absge0d |  | 
						
							| 88 | 61 | absge0d |  | 
						
							| 89 | 6 | recnd |  | 
						
							| 90 | 3 | nncnd |  | 
						
							| 91 | 3 | nnne0d |  | 
						
							| 92 | 89 90 91 | absdivd |  | 
						
							| 93 | 3 | nnrpd |  | 
						
							| 94 |  | rprege0 |  | 
						
							| 95 | 93 94 | syl |  | 
						
							| 96 |  | absid |  | 
						
							| 97 | 95 96 | syl |  | 
						
							| 98 | 97 | oveq2d |  | 
						
							| 99 | 92 98 | eqtrd |  | 
						
							| 100 | 89 | abscld |  | 
						
							| 101 |  | 1red |  | 
						
							| 102 |  | mule1 |  | 
						
							| 103 | 3 102 | syl |  | 
						
							| 104 | 100 101 93 103 | lediv1dd |  | 
						
							| 105 | 99 104 | eqbrtrd |  | 
						
							| 106 |  | harmonicbnd4 |  | 
						
							| 107 | 28 106 | syl |  | 
						
							| 108 |  | rpcnne0 |  | 
						
							| 109 | 108 | adantr |  | 
						
							| 110 |  | rpcnne0 |  | 
						
							| 111 | 93 110 | syl |  | 
						
							| 112 |  | recdiv |  | 
						
							| 113 | 109 111 112 | syl2anc |  | 
						
							| 114 | 107 113 | breqtrd |  | 
						
							| 115 | 80 81 82 86 87 88 105 114 | lemul12ad |  | 
						
							| 116 | 8 61 | absmuld |  | 
						
							| 117 |  | 1cnd |  | 
						
							| 118 |  | dmdcan |  | 
						
							| 119 | 111 109 117 118 | syl3anc |  | 
						
							| 120 | 85 | rpcnd |  | 
						
							| 121 | 81 | recnd |  | 
						
							| 122 | 120 121 | mulcomd |  | 
						
							| 123 | 119 122 | eqtr3d |  | 
						
							| 124 | 115 116 123 | 3brtr4d |  | 
						
							| 125 | 1 67 79 124 | fsumle |  | 
						
							| 126 |  | hashfz1 |  | 
						
							| 127 | 73 126 | syl |  | 
						
							| 128 | 127 | oveq1d |  | 
						
							| 129 | 77 | rpcnd |  | 
						
							| 130 |  | fsumconst |  | 
						
							| 131 | 1 129 130 | syl2anc |  | 
						
							| 132 | 73 | nn0cnd |  | 
						
							| 133 |  | rpcn |  | 
						
							| 134 |  | rpne0 |  | 
						
							| 135 | 132 133 134 | divrecd |  | 
						
							| 136 | 128 131 135 | 3eqtr4d |  | 
						
							| 137 | 125 136 | breqtrd |  | 
						
							| 138 |  | rpre |  | 
						
							| 139 |  | flle |  | 
						
							| 140 | 138 139 | syl |  | 
						
							| 141 | 133 | mulridd |  | 
						
							| 142 | 140 141 | breqtrrd |  | 
						
							| 143 |  | reflcl |  | 
						
							| 144 | 138 143 | syl |  | 
						
							| 145 |  | rpregt0 |  | 
						
							| 146 |  | ledivmul |  | 
						
							| 147 | 144 69 145 146 | syl3anc |  | 
						
							| 148 | 142 147 | mpbird |  | 
						
							| 149 | 68 76 69 137 148 | letrd |  | 
						
							| 150 | 66 68 69 70 149 | letrd |  | 
						
							| 151 | 150 | ad2antrl |  | 
						
							| 152 | 59 64 65 65 151 | elo1d |  | 
						
							| 153 | 58 152 | eqeltrrid |  | 
						
							| 154 | 34 37 153 | o1dif |  | 
						
							| 155 | 20 154 | mpbird |  | 
						
							| 156 | 155 | mptru |  |