| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 2 | 1 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 3 |  | 1rp |  |-  1 e. RR+ | 
						
							| 4 | 3 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 5 |  | 1red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 6 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 9 | 5 2 8 | ltled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 10 | 2 4 9 | rpgecld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 11 | 10 | ex |  |-  ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 12 | 11 | ssrdv |  |-  ( T. -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 13 |  | vmadivsum |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) | 
						
							| 14 | 13 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 15 | 12 14 | o1res2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 16 |  | fzfid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 17 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 19 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 21 | 20 18 | nndivred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 23 | 16 22 | fsumcl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 24 | 10 | relogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 26 | 23 25 | subcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) | 
						
							| 27 | 18 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 28 | 27 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 29 | 21 28 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. RR ) | 
						
							| 30 | 16 29 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. RR ) | 
						
							| 31 | 2 8 | rplogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 32 | 30 31 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) | 
						
							| 33 | 24 | rehalfcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) | 
						
							| 34 | 32 33 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. CC ) | 
						
							| 36 | 33 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) | 
						
							| 37 | 23 36 | subcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) e. CC ) | 
						
							| 38 | 32 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) e. CC ) | 
						
							| 39 | 37 38 36 | nnncan2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) | 
						
							| 40 | 23 36 36 | subsub4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( ( log ` x ) / 2 ) + ( ( log ` x ) / 2 ) ) ) ) | 
						
							| 41 | 25 | 2halvesd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) / 2 ) + ( ( log ` x ) / 2 ) ) = ( log ` x ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( ( log ` x ) / 2 ) + ( ( log ` x ) / 2 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) | 
						
							| 43 | 40 42 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) | 
						
							| 45 | 23 36 38 | sub32d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) - ( ( log ` x ) / 2 ) ) ) | 
						
							| 46 | 10 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 47 | 46 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` x ) e. RR ) | 
						
							| 48 | 21 47 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) e. RR ) | 
						
							| 49 | 48 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) e. CC ) | 
						
							| 50 | 29 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. CC ) | 
						
							| 51 | 16 49 50 | fsumsub |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) | 
						
							| 52 | 46 27 | relogdivd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) = ( ( log ` x ) - ( log ` n ) ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( ( Lam ` n ) / n ) x. ( ( log ` x ) - ( log ` n ) ) ) ) | 
						
							| 54 | 25 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` x ) e. CC ) | 
						
							| 55 | 28 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 56 | 22 54 55 | subdid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( ( log ` x ) - ( log ` n ) ) ) = ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) | 
						
							| 57 | 53 56 | eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) | 
						
							| 58 | 57 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) | 
						
							| 59 | 20 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 60 | 18 | nncnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 61 | 18 | nnne0d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 62 | 59 60 61 | divcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 63 | 16 25 62 | fsummulc1 |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) | 
						
							| 65 | 51 58 64 | 3eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) / ( log ` x ) ) ) | 
						
							| 67 | 23 25 | mulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) e. CC ) | 
						
							| 68 | 30 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. CC ) | 
						
							| 69 | 31 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 70 | 67 68 25 69 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) / ( log ` x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) | 
						
							| 71 | 23 25 69 | divcan4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) / ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) | 
						
							| 73 | 66 70 72 | 3eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) | 
						
							| 74 | 73 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) - ( ( log ` x ) / 2 ) ) ) | 
						
							| 75 | 45 74 | eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) | 
						
							| 76 | 39 44 75 | 3eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) | 
						
							| 77 | 76 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) | 
						
							| 78 |  | vmalogdivsum2 |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) | 
						
							| 79 | 77 78 | eqeltrdi |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) | 
						
							| 80 | 26 35 79 | o1dif |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) ) | 
						
							| 81 | 15 80 | mpbid |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) | 
						
							| 82 | 81 | mptru |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |