| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2vmadivsum.1 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | 2vmadivsum.2 |  |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) - ( log ` y ) ) ) <_ A ) | 
						
							| 3 |  | vmalogdivsum2 |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) | 
						
							| 4 | 3 | a1i |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) | 
						
							| 5 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 6 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 8 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 10 | 9 7 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 11 |  | fzfid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 12 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) | 
						
							| 14 |  | vmacl |  |-  ( m e. NN -> ( Lam ` m ) e. RR ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 16 | 15 13 | nndivred |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) / m ) e. RR ) | 
						
							| 17 | 11 16 | fsumrecl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) e. RR ) | 
						
							| 18 | 10 17 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. RR ) | 
						
							| 19 | 5 18 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. RR ) | 
						
							| 20 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 22 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 25 | 21 24 | rplogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 26 | 19 25 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) e. RR ) | 
						
							| 27 |  | 1rp |  |-  1 e. RR+ | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 29 |  | 1red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 30 | 29 21 24 | ltled |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 31 | 21 28 30 | rpgecld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 32 | 31 | relogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 33 | 32 | rehalfcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) | 
						
							| 34 | 26 33 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. CC ) | 
						
							| 36 | 31 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 37 | 7 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 38 | 36 37 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 39 | 38 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 40 | 10 39 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 41 | 5 40 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 42 | 41 25 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) e. RR ) | 
						
							| 43 | 42 33 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. CC ) | 
						
							| 45 | 19 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. CC ) | 
						
							| 46 | 41 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 47 | 32 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 48 | 25 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 49 | 45 46 47 48 | divsubdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) | 
						
							| 50 | 10 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 51 | 17 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) e. CC ) | 
						
							| 52 | 39 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) | 
						
							| 53 | 50 51 52 | subdid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) = ( ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 54 | 53 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 55 | 18 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. CC ) | 
						
							| 56 | 40 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 57 | 5 55 56 | fsumsub |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 58 | 54 57 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 59 | 58 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) | 
						
							| 60 | 26 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) e. CC ) | 
						
							| 61 | 42 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) e. CC ) | 
						
							| 62 | 33 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) | 
						
							| 63 | 60 61 62 | nnncan2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) | 
						
							| 64 | 49 59 63 | 3eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) | 
						
							| 65 | 64 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) ) | 
						
							| 66 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 67 | 5 10 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 68 | 67 25 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) e. RR ) | 
						
							| 69 | 1 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) | 
						
							| 71 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 72 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 73 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) | 
						
							| 74 | 71 72 73 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) | 
						
							| 75 | 68 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) e. CC ) | 
						
							| 76 |  | 1cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) | 
						
							| 77 | 67 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 78 | 77 47 47 48 | divsubdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - ( ( log ` x ) / ( log ` x ) ) ) ) | 
						
							| 79 | 77 47 | subcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) | 
						
							| 80 | 79 47 48 | divrecd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 81 | 47 48 | dividd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - ( ( log ` x ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) | 
						
							| 83 | 78 80 82 | 3eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) | 
						
							| 84 | 83 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) ) | 
						
							| 85 | 67 32 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. RR ) | 
						
							| 86 | 29 25 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 87 | 31 | ex |  |-  ( ph -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 88 | 87 | ssrdv |  |-  ( ph -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 89 |  | vmadivsum |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) | 
						
							| 90 | 89 | a1i |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 91 | 88 90 | o1res2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 92 |  | divlogrlim |  |-  ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 | 
						
							| 93 |  | rlimo1 |  |-  ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 94 | 92 93 | mp1i |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 95 | 85 86 91 94 | o1mul2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 96 | 84 95 | eqeltrrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) e. O(1) ) | 
						
							| 97 | 75 76 96 | o1dif |  |-  ( ph -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) ) | 
						
							| 98 | 74 97 | mpbird |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. O(1) ) | 
						
							| 99 | 69 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 100 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ A e. CC ) -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) | 
						
							| 101 | 71 99 100 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) | 
						
							| 102 | 68 70 98 101 | o1mul2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) e. O(1) ) | 
						
							| 103 | 68 70 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) e. RR ) | 
						
							| 104 | 17 39 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 105 | 10 104 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 106 | 5 105 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 107 | 106 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 108 | 107 47 48 | divcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) e. CC ) | 
						
							| 109 | 107 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 110 | 67 70 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) e. RR ) | 
						
							| 111 | 105 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 112 | 111 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 113 | 5 112 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 114 | 5 111 | fsumabs |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) ) | 
						
							| 115 | 70 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) | 
						
							| 116 | 10 115 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. A ) e. RR ) | 
						
							| 117 | 104 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) e. CC ) | 
						
							| 118 | 50 117 | absmuld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) = ( ( abs ` ( ( Lam ` n ) / n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) ) | 
						
							| 119 |  | vmage0 |  |-  ( n e. NN -> 0 <_ ( Lam ` n ) ) | 
						
							| 120 | 7 119 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) | 
						
							| 121 | 9 37 120 | divge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) | 
						
							| 122 | 10 121 | absidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) / n ) ) = ( ( Lam ` n ) / n ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( Lam ` n ) / n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) = ( ( ( Lam ` n ) / n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) ) | 
						
							| 124 | 118 123 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) = ( ( ( Lam ` n ) / n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) ) | 
						
							| 125 | 117 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 126 |  | fveq2 |  |-  ( i = m -> ( Lam ` i ) = ( Lam ` m ) ) | 
						
							| 127 |  | id |  |-  ( i = m -> i = m ) | 
						
							| 128 | 126 127 | oveq12d |  |-  ( i = m -> ( ( Lam ` i ) / i ) = ( ( Lam ` m ) / m ) ) | 
						
							| 129 | 128 | cbvsumv |  |-  sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) = sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) / m ) | 
						
							| 130 |  | fveq2 |  |-  ( y = ( x / n ) -> ( |_ ` y ) = ( |_ ` ( x / n ) ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( y = ( x / n ) -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` ( x / n ) ) ) ) | 
						
							| 132 | 131 | sumeq1d |  |-  ( y = ( x / n ) -> sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) / m ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) | 
						
							| 133 | 129 132 | eqtrid |  |-  ( y = ( x / n ) -> sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) | 
						
							| 134 |  | fveq2 |  |-  ( y = ( x / n ) -> ( log ` y ) = ( log ` ( x / n ) ) ) | 
						
							| 135 | 133 134 | oveq12d |  |-  ( y = ( x / n ) -> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) - ( log ` y ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) | 
						
							| 136 | 135 | fveq2d |  |-  ( y = ( x / n ) -> ( abs ` ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) - ( log ` y ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) | 
						
							| 137 | 136 | breq1d |  |-  ( y = ( x / n ) -> ( ( abs ` ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) - ( log ` y ) ) ) <_ A <-> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) <_ A ) ) | 
						
							| 138 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) / i ) - ( log ` y ) ) ) <_ A ) | 
						
							| 139 | 38 | rpred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 140 | 7 | nncnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 141 | 140 | mullidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) | 
						
							| 142 |  | fznnfl |  |-  ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 143 | 21 142 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 144 | 143 | simplbda |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) | 
						
							| 145 | 141 144 | eqbrtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) | 
						
							| 146 |  | 1red |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 147 | 21 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 148 | 146 147 37 | lemuldivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) | 
						
							| 149 | 145 148 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) | 
						
							| 150 |  | 1re |  |-  1 e. RR | 
						
							| 151 |  | elicopnf |  |-  ( 1 e. RR -> ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) ) | 
						
							| 152 | 150 151 | ax-mp |  |-  ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) | 
						
							| 153 | 139 149 152 | sylanbrc |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. ( 1 [,) +oo ) ) | 
						
							| 154 | 137 138 153 | rspcdva |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) <_ A ) | 
						
							| 155 | 125 115 10 121 154 | lemul2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) <_ ( ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 156 | 124 155 | eqbrtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) <_ ( ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 157 | 5 112 116 156 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 158 | 99 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. CC ) | 
						
							| 159 | 5 158 50 | fsummulc1 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 160 | 157 159 | breqtrrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 161 | 109 113 110 114 160 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 162 | 109 110 25 161 | lediv1dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) / ( log ` x ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) ) | 
						
							| 163 | 107 47 48 | absdivd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) / ( abs ` ( log ` x ) ) ) ) | 
						
							| 164 | 25 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( log ` x ) ) | 
						
							| 165 | 32 164 | absidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( log ` x ) ) = ( log ` x ) ) | 
						
							| 166 | 165 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) / ( abs ` ( log ` x ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) / ( log ` x ) ) ) | 
						
							| 167 | 163 166 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) ) / ( log ` x ) ) ) | 
						
							| 168 | 5 10 121 | fsumge0 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) | 
						
							| 169 | 67 25 168 | divge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) | 
						
							| 170 | 1 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) | 
						
							| 171 | 170 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ A ) | 
						
							| 172 | 68 70 169 171 | mulge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) | 
						
							| 173 | 103 172 | absidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) | 
						
							| 174 | 77 158 47 48 | div23d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) | 
						
							| 175 | 173 174 | eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) ) | 
						
							| 176 | 162 167 175 | 3brtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) ) | 
						
							| 177 | 176 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) x. A ) ) ) | 
						
							| 178 | 66 102 103 108 177 | o1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) - ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) e. O(1) ) | 
						
							| 179 | 65 178 | eqeltrrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) | 
						
							| 180 | 35 44 179 | o1dif |  |-  ( ph -> ( ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) ) | 
						
							| 181 | 4 180 | mpbird |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) |