Metamath Proof Explorer


Theorem 2vmadivsumlem

Description: Lemma for 2vmadivsum . (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses 2vmadivsum.1 φ A +
2vmadivsum.2 φ y 1 +∞ i = 1 y Λ i i log y A
Assertion 2vmadivsumlem φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1

Proof

Step Hyp Ref Expression
1 2vmadivsum.1 φ A +
2 2vmadivsum.2 φ y 1 +∞ i = 1 y Λ i i log y A
3 vmalogdivsum2 x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
4 3 a1i φ x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
5 fzfid φ x 1 +∞ 1 x Fin
6 elfznn n 1 x n
7 6 adantl φ x 1 +∞ n 1 x n
8 vmacl n Λ n
9 7 8 syl φ x 1 +∞ n 1 x Λ n
10 9 7 nndivred φ x 1 +∞ n 1 x Λ n n
11 fzfid φ x 1 +∞ n 1 x 1 x n Fin
12 elfznn m 1 x n m
13 12 adantl φ x 1 +∞ n 1 x m 1 x n m
14 vmacl m Λ m
15 13 14 syl φ x 1 +∞ n 1 x m 1 x n Λ m
16 15 13 nndivred φ x 1 +∞ n 1 x m 1 x n Λ m m
17 11 16 fsumrecl φ x 1 +∞ n 1 x m = 1 x n Λ m m
18 10 17 remulcld φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m
19 5 18 fsumrecl φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m
20 elioore x 1 +∞ x
21 20 adantl φ x 1 +∞ x
22 eliooord x 1 +∞ 1 < x x < +∞
23 22 adantl φ x 1 +∞ 1 < x x < +∞
24 23 simpld φ x 1 +∞ 1 < x
25 21 24 rplogcld φ x 1 +∞ log x +
26 19 25 rerpdivcld φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x
27 1rp 1 +
28 27 a1i φ x 1 +∞ 1 +
29 1red φ x 1 +∞ 1
30 29 21 24 ltled φ x 1 +∞ 1 x
31 21 28 30 rpgecld φ x 1 +∞ x +
32 31 relogcld φ x 1 +∞ log x
33 32 rehalfcld φ x 1 +∞ log x 2
34 26 33 resubcld φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2
35 34 recnd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2
36 31 adantr φ x 1 +∞ n 1 x x +
37 7 nnrpd φ x 1 +∞ n 1 x n +
38 36 37 rpdivcld φ x 1 +∞ n 1 x x n +
39 38 relogcld φ x 1 +∞ n 1 x log x n
40 10 39 remulcld φ x 1 +∞ n 1 x Λ n n log x n
41 5 40 fsumrecl φ x 1 +∞ n = 1 x Λ n n log x n
42 41 25 rerpdivcld φ x 1 +∞ n = 1 x Λ n n log x n log x
43 42 33 resubcld φ x 1 +∞ n = 1 x Λ n n log x n log x log x 2
44 43 recnd φ x 1 +∞ n = 1 x Λ n n log x n log x log x 2
45 19 recnd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m
46 41 recnd φ x 1 +∞ n = 1 x Λ n n log x n
47 32 recnd φ x 1 +∞ log x
48 25 rpne0d φ x 1 +∞ log x 0
49 45 46 47 48 divsubdird φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m n = 1 x Λ n n log x n log x = n = 1 x Λ n n m = 1 x n Λ m m log x n = 1 x Λ n n log x n log x
50 10 recnd φ x 1 +∞ n 1 x Λ n n
51 17 recnd φ x 1 +∞ n 1 x m = 1 x n Λ m m
52 39 recnd φ x 1 +∞ n 1 x log x n
53 50 51 52 subdid φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n = Λ n n m = 1 x n Λ m m Λ n n log x n
54 53 sumeq2dv φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n = n = 1 x Λ n n m = 1 x n Λ m m Λ n n log x n
55 18 recnd φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m
56 40 recnd φ x 1 +∞ n 1 x Λ n n log x n
57 5 55 56 fsumsub φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m Λ n n log x n = n = 1 x Λ n n m = 1 x n Λ m m n = 1 x Λ n n log x n
58 54 57 eqtrd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n = n = 1 x Λ n n m = 1 x n Λ m m n = 1 x Λ n n log x n
59 58 oveq1d φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x = n = 1 x Λ n n m = 1 x n Λ m m n = 1 x Λ n n log x n log x
60 26 recnd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x
61 42 recnd φ x 1 +∞ n = 1 x Λ n n log x n log x
62 33 recnd φ x 1 +∞ log x 2
63 60 61 62 nnncan2d φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x - log x 2 - n = 1 x Λ n n log x n log x log x 2 = n = 1 x Λ n n m = 1 x n Λ m m log x n = 1 x Λ n n log x n log x
64 49 59 63 3eqtr4d φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x = n = 1 x Λ n n m = 1 x n Λ m m log x - log x 2 - n = 1 x Λ n n log x n log x log x 2
65 64 mpteq2dva φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x = x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x - log x 2 - n = 1 x Λ n n log x n log x log x 2
66 1red φ 1
67 5 10 fsumrecl φ x 1 +∞ n = 1 x Λ n n
68 67 25 rerpdivcld φ x 1 +∞ n = 1 x Λ n n log x
69 1 rpred φ A
70 69 adantr φ x 1 +∞ A
71 ioossre 1 +∞
72 1cnd φ 1
73 o1const 1 +∞ 1 x 1 +∞ 1 𝑂1
74 71 72 73 sylancr φ x 1 +∞ 1 𝑂1
75 68 recnd φ x 1 +∞ n = 1 x Λ n n log x
76 1cnd φ x 1 +∞ 1
77 67 recnd φ x 1 +∞ n = 1 x Λ n n
78 77 47 47 48 divsubdird φ x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n log x log x log x
79 77 47 subcld φ x 1 +∞ n = 1 x Λ n n log x
80 79 47 48 divrecd φ x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n log x 1 log x
81 47 48 dividd φ x 1 +∞ log x log x = 1
82 81 oveq2d φ x 1 +∞ n = 1 x Λ n n log x log x log x = n = 1 x Λ n n log x 1
83 78 80 82 3eqtr3d φ x 1 +∞ n = 1 x Λ n n log x 1 log x = n = 1 x Λ n n log x 1
84 83 mpteq2dva φ x 1 +∞ n = 1 x Λ n n log x 1 log x = x 1 +∞ n = 1 x Λ n n log x 1
85 67 32 resubcld φ x 1 +∞ n = 1 x Λ n n log x
86 29 25 rerpdivcld φ x 1 +∞ 1 log x
87 31 ex φ x 1 +∞ x +
88 87 ssrdv φ 1 +∞ +
89 vmadivsum x + n = 1 x Λ n n log x 𝑂1
90 89 a1i φ x + n = 1 x Λ n n log x 𝑂1
91 88 90 o1res2 φ x 1 +∞ n = 1 x Λ n n log x 𝑂1
92 divlogrlim x 1 +∞ 1 log x 0
93 rlimo1 x 1 +∞ 1 log x 0 x 1 +∞ 1 log x 𝑂1
94 92 93 mp1i φ x 1 +∞ 1 log x 𝑂1
95 85 86 91 94 o1mul2 φ x 1 +∞ n = 1 x Λ n n log x 1 log x 𝑂1
96 84 95 eqeltrrd φ x 1 +∞ n = 1 x Λ n n log x 1 𝑂1
97 75 76 96 o1dif φ x 1 +∞ n = 1 x Λ n n log x 𝑂1 x 1 +∞ 1 𝑂1
98 74 97 mpbird φ x 1 +∞ n = 1 x Λ n n log x 𝑂1
99 69 recnd φ A
100 o1const 1 +∞ A x 1 +∞ A 𝑂1
101 71 99 100 sylancr φ x 1 +∞ A 𝑂1
102 68 70 98 101 o1mul2 φ x 1 +∞ n = 1 x Λ n n log x A 𝑂1
103 68 70 remulcld φ x 1 +∞ n = 1 x Λ n n log x A
104 17 39 resubcld φ x 1 +∞ n 1 x m = 1 x n Λ m m log x n
105 10 104 remulcld φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n
106 5 105 fsumrecl φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n
107 106 recnd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n
108 107 47 48 divcld φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x
109 107 abscld φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n
110 67 70 remulcld φ x 1 +∞ n = 1 x Λ n n A
111 105 recnd φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n
112 111 abscld φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n
113 5 112 fsumrecl φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n
114 5 111 fsumabs φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n n = 1 x Λ n n m = 1 x n Λ m m log x n
115 70 adantr φ x 1 +∞ n 1 x A
116 10 115 remulcld φ x 1 +∞ n 1 x Λ n n A
117 104 recnd φ x 1 +∞ n 1 x m = 1 x n Λ m m log x n
118 50 117 absmuld φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n = Λ n n m = 1 x n Λ m m log x n
119 vmage0 n 0 Λ n
120 7 119 syl φ x 1 +∞ n 1 x 0 Λ n
121 9 37 120 divge0d φ x 1 +∞ n 1 x 0 Λ n n
122 10 121 absidd φ x 1 +∞ n 1 x Λ n n = Λ n n
123 122 oveq1d φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n = Λ n n m = 1 x n Λ m m log x n
124 118 123 eqtrd φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n = Λ n n m = 1 x n Λ m m log x n
125 117 abscld φ x 1 +∞ n 1 x m = 1 x n Λ m m log x n
126 fveq2 i = m Λ i = Λ m
127 id i = m i = m
128 126 127 oveq12d i = m Λ i i = Λ m m
129 128 cbvsumv i = 1 y Λ i i = m = 1 y Λ m m
130 fveq2 y = x n y = x n
131 130 oveq2d y = x n 1 y = 1 x n
132 131 sumeq1d y = x n m = 1 y Λ m m = m = 1 x n Λ m m
133 129 132 eqtrid y = x n i = 1 y Λ i i = m = 1 x n Λ m m
134 fveq2 y = x n log y = log x n
135 133 134 oveq12d y = x n i = 1 y Λ i i log y = m = 1 x n Λ m m log x n
136 135 fveq2d y = x n i = 1 y Λ i i log y = m = 1 x n Λ m m log x n
137 136 breq1d y = x n i = 1 y Λ i i log y A m = 1 x n Λ m m log x n A
138 2 ad2antrr φ x 1 +∞ n 1 x y 1 +∞ i = 1 y Λ i i log y A
139 38 rpred φ x 1 +∞ n 1 x x n
140 7 nncnd φ x 1 +∞ n 1 x n
141 140 mulid2d φ x 1 +∞ n 1 x 1 n = n
142 fznnfl x n 1 x n n x
143 21 142 syl φ x 1 +∞ n 1 x n n x
144 143 simplbda φ x 1 +∞ n 1 x n x
145 141 144 eqbrtrd φ x 1 +∞ n 1 x 1 n x
146 1red φ x 1 +∞ n 1 x 1
147 21 adantr φ x 1 +∞ n 1 x x
148 146 147 37 lemuldivd φ x 1 +∞ n 1 x 1 n x 1 x n
149 145 148 mpbid φ x 1 +∞ n 1 x 1 x n
150 1re 1
151 elicopnf 1 x n 1 +∞ x n 1 x n
152 150 151 ax-mp x n 1 +∞ x n 1 x n
153 139 149 152 sylanbrc φ x 1 +∞ n 1 x x n 1 +∞
154 137 138 153 rspcdva φ x 1 +∞ n 1 x m = 1 x n Λ m m log x n A
155 125 115 10 121 154 lemul2ad φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n Λ n n A
156 124 155 eqbrtrd φ x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m log x n Λ n n A
157 5 112 116 156 fsumle φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n n = 1 x Λ n n A
158 99 adantr φ x 1 +∞ A
159 5 158 50 fsummulc1 φ x 1 +∞ n = 1 x Λ n n A = n = 1 x Λ n n A
160 157 159 breqtrrd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n n = 1 x Λ n n A
161 109 113 110 114 160 letrd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n n = 1 x Λ n n A
162 109 110 25 161 lediv1dd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x n = 1 x Λ n n A log x
163 107 47 48 absdivd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x = n = 1 x Λ n n m = 1 x n Λ m m log x n log x
164 25 rpge0d φ x 1 +∞ 0 log x
165 32 164 absidd φ x 1 +∞ log x = log x
166 165 oveq2d φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x = n = 1 x Λ n n m = 1 x n Λ m m log x n log x
167 163 166 eqtrd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x = n = 1 x Λ n n m = 1 x n Λ m m log x n log x
168 5 10 121 fsumge0 φ x 1 +∞ 0 n = 1 x Λ n n
169 67 25 168 divge0d φ x 1 +∞ 0 n = 1 x Λ n n log x
170 1 adantr φ x 1 +∞ A +
171 170 rpge0d φ x 1 +∞ 0 A
172 68 70 169 171 mulge0d φ x 1 +∞ 0 n = 1 x Λ n n log x A
173 103 172 absidd φ x 1 +∞ n = 1 x Λ n n log x A = n = 1 x Λ n n log x A
174 77 158 47 48 div23d φ x 1 +∞ n = 1 x Λ n n A log x = n = 1 x Λ n n log x A
175 173 174 eqtr4d φ x 1 +∞ n = 1 x Λ n n log x A = n = 1 x Λ n n A log x
176 162 167 175 3brtr4d φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x n = 1 x Λ n n log x A
177 176 adantrr φ x 1 +∞ 1 x n = 1 x Λ n n m = 1 x n Λ m m log x n log x n = 1 x Λ n n log x A
178 66 102 103 108 177 o1le φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x n log x 𝑂1
179 65 178 eqeltrrd φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x - log x 2 - n = 1 x Λ n n log x n log x log x 2 𝑂1
180 35 44 179 o1dif φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1 x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
181 4 180 mpbird φ x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1