Metamath Proof Explorer


Theorem divlogrlim

Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion divlogrlim x1+∞1logx0

Proof

Step Hyp Ref Expression
1 elioore x1+∞x
2 eliooord x1+∞1<xx<+∞
3 2 simpld x1+∞1<x
4 1 3 rplogcld x1+∞logx+
5 4 rprecred x1+∞1logx
6 5 recnd x1+∞1logx
7 6 rgen x1+∞1logx
8 7 a1i x1+∞1logx
9 ioossre 1+∞
10 9 a1i 1+∞
11 8 10 rlim0lt x1+∞1logx0y+cx1+∞c<x1logx<y
12 11 mptru x1+∞1logx0y+cx1+∞c<x1logx<y
13 id y+y+
14 13 rprecred y+1y
15 14 reefcld y+e1y
16 5 ad2antlr y+x1+∞e1y<x1logx
17 1 ad2antlr y+x1+∞e1y<xx
18 3 ad2antlr y+x1+∞e1y<x1<x
19 17 18 rplogcld y+x1+∞e1y<xlogx+
20 19 rpreccld y+x1+∞e1y<x1logx+
21 20 rpge0d y+x1+∞e1y<x01logx
22 16 21 absidd y+x1+∞e1y<x1logx=1logx
23 simpll y+x1+∞e1y<xy+
24 4 ad2antlr y+x1+∞e1y<xlogx+
25 simpr y+x1+∞e1y<xe1y<x
26 1rp 1+
27 26 a1i y+x1+∞e1y<x1+
28 27 rpred y+x1+∞e1y<x1
29 28 17 18 ltled y+x1+∞e1y<x1x
30 17 27 29 rpgecld y+x1+∞e1y<xx+
31 30 reeflogd y+x1+∞e1y<xelogx=x
32 25 31 breqtrrd y+x1+∞e1y<xe1y<elogx
33 23 rprecred y+x1+∞e1y<x1y
34 24 rpred y+x1+∞e1y<xlogx
35 eflt 1ylogx1y<logxe1y<elogx
36 33 34 35 syl2anc y+x1+∞e1y<x1y<logxe1y<elogx
37 32 36 mpbird y+x1+∞e1y<x1y<logx
38 23 24 37 ltrec1d y+x1+∞e1y<x1logx<y
39 22 38 eqbrtrd y+x1+∞e1y<x1logx<y
40 39 ex y+x1+∞e1y<x1logx<y
41 40 ralrimiva y+x1+∞e1y<x1logx<y
42 breq1 c=e1yc<xe1y<x
43 42 rspceaimv e1yx1+∞e1y<x1logx<ycx1+∞c<x1logx<y
44 15 41 43 syl2anc y+cx1+∞c<x1logx<y
45 12 44 mprgbir x1+∞1logx0