| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 2 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 3 |
2
|
simpld |
|- ( x e. ( 1 (,) +oo ) -> 1 < x ) |
| 4 |
1 3
|
rplogcld |
|- ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ ) |
| 5 |
4
|
rprecred |
|- ( x e. ( 1 (,) +oo ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 6 |
5
|
recnd |
|- ( x e. ( 1 (,) +oo ) -> ( 1 / ( log ` x ) ) e. CC ) |
| 7 |
6
|
rgen |
|- A. x e. ( 1 (,) +oo ) ( 1 / ( log ` x ) ) e. CC |
| 8 |
7
|
a1i |
|- ( T. -> A. x e. ( 1 (,) +oo ) ( 1 / ( log ` x ) ) e. CC ) |
| 9 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
| 10 |
9
|
a1i |
|- ( T. -> ( 1 (,) +oo ) C_ RR ) |
| 11 |
8 10
|
rlim0lt |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) ) |
| 12 |
11
|
mptru |
|- ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 13 |
|
id |
|- ( y e. RR+ -> y e. RR+ ) |
| 14 |
13
|
rprecred |
|- ( y e. RR+ -> ( 1 / y ) e. RR ) |
| 15 |
14
|
reefcld |
|- ( y e. RR+ -> ( exp ` ( 1 / y ) ) e. RR ) |
| 16 |
5
|
ad2antlr |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 17 |
1
|
ad2antlr |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> x e. RR ) |
| 18 |
3
|
ad2antlr |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 < x ) |
| 19 |
17 18
|
rplogcld |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR+ ) |
| 20 |
19
|
rpreccld |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) e. RR+ ) |
| 21 |
20
|
rpge0d |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 0 <_ ( 1 / ( log ` x ) ) ) |
| 22 |
16 21
|
absidd |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( abs ` ( 1 / ( log ` x ) ) ) = ( 1 / ( log ` x ) ) ) |
| 23 |
|
simpll |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> y e. RR+ ) |
| 24 |
4
|
ad2antlr |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR+ ) |
| 25 |
|
simpr |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( 1 / y ) ) < x ) |
| 26 |
|
1rp |
|- 1 e. RR+ |
| 27 |
26
|
a1i |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 e. RR+ ) |
| 28 |
27
|
rpred |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 e. RR ) |
| 29 |
28 17 18
|
ltled |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 <_ x ) |
| 30 |
17 27 29
|
rpgecld |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> x e. RR+ ) |
| 31 |
30
|
reeflogd |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( log ` x ) ) = x ) |
| 32 |
25 31
|
breqtrrd |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) |
| 33 |
23
|
rprecred |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / y ) e. RR ) |
| 34 |
24
|
rpred |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR ) |
| 35 |
|
eflt |
|- ( ( ( 1 / y ) e. RR /\ ( log ` x ) e. RR ) -> ( ( 1 / y ) < ( log ` x ) <-> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) ) |
| 36 |
33 34 35
|
syl2anc |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( ( 1 / y ) < ( log ` x ) <-> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) ) |
| 37 |
32 36
|
mpbird |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / y ) < ( log ` x ) ) |
| 38 |
23 24 37
|
ltrec1d |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) < y ) |
| 39 |
22 38
|
eqbrtrd |
|- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) |
| 40 |
39
|
ex |
|- ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) -> ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 41 |
40
|
ralrimiva |
|- ( y e. RR+ -> A. x e. ( 1 (,) +oo ) ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 42 |
|
breq1 |
|- ( c = ( exp ` ( 1 / y ) ) -> ( c < x <-> ( exp ` ( 1 / y ) ) < x ) ) |
| 43 |
42
|
rspceaimv |
|- ( ( ( exp ` ( 1 / y ) ) e. RR /\ A. x e. ( 1 (,) +oo ) ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) -> E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 44 |
15 41 43
|
syl2anc |
|- ( y e. RR+ -> E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 45 |
12 44
|
mprgbir |
|- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |