Step |
Hyp |
Ref |
Expression |
1 |
|
elioore |
|- ( y e. ( 1 (,) +oo ) -> y e. RR ) |
2 |
1
|
adantl |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> y e. RR ) |
3 |
|
1rp |
|- 1 e. RR+ |
4 |
3
|
a1i |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
5 |
|
1red |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
6 |
|
eliooord |
|- ( y e. ( 1 (,) +oo ) -> ( 1 < y /\ y < +oo ) ) |
7 |
6
|
adantl |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( 1 < y /\ y < +oo ) ) |
8 |
7
|
simpld |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 < y ) |
9 |
5 2 8
|
ltled |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 <_ y ) |
10 |
2 4 9
|
rpgecld |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> y e. RR+ ) |
11 |
10
|
ex |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) -> y e. RR+ ) ) |
12 |
11
|
ssrdv |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( 1 (,) +oo ) C_ RR+ ) |
13 |
|
fveq2 |
|- ( x = y -> ( log ` x ) = ( log ` y ) ) |
14 |
13
|
cbvmptv |
|- ( x e. RR+ |-> ( log ` x ) ) = ( y e. RR+ |-> ( log ` y ) ) |
15 |
14
|
eleq1i |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) <-> ( y e. RR+ |-> ( log ` y ) ) e. O(1) ) |
16 |
15
|
biimpi |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. RR+ |-> ( log ` y ) ) e. O(1) ) |
17 |
12 16
|
o1res2 |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) |-> ( log ` y ) ) e. O(1) ) |
18 |
|
1red |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 e. RR ) |
19 |
18
|
rexrd |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 e. RR* ) |
20 |
18
|
renepnfd |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 =/= +oo ) |
21 |
|
ioopnfsup |
|- ( ( 1 e. RR* /\ 1 =/= +oo ) -> sup ( ( 1 (,) +oo ) , RR* , < ) = +oo ) |
22 |
19 20 21
|
syl2anc |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> sup ( ( 1 (,) +oo ) , RR* , < ) = +oo ) |
23 |
|
divlogrlim |
|- ( y e. ( 1 (,) +oo ) |-> ( 1 / ( log ` y ) ) ) ~~>r 0 |
24 |
23
|
a1i |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) |-> ( 1 / ( log ` y ) ) ) ~~>r 0 ) |
25 |
2 8
|
rplogcld |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) e. RR+ ) |
26 |
25
|
rpcnd |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) e. CC ) |
27 |
25
|
rpne0d |
|- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) =/= 0 ) |
28 |
22 24 26 27
|
rlimno1 |
|- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> -. ( y e. ( 1 (,) +oo ) |-> ( log ` y ) ) e. O(1) ) |
29 |
17 28
|
pm2.65i |
|- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |