Metamath Proof Explorer


Theorem logno1

Description: The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016) (Proof shortened by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion logno1 ¬x+logx𝑂1

Proof

Step Hyp Ref Expression
1 elioore y1+∞y
2 1 adantl x+logx𝑂1y1+∞y
3 1rp 1+
4 3 a1i x+logx𝑂1y1+∞1+
5 1red x+logx𝑂1y1+∞1
6 eliooord y1+∞1<yy<+∞
7 6 adantl x+logx𝑂1y1+∞1<yy<+∞
8 7 simpld x+logx𝑂1y1+∞1<y
9 5 2 8 ltled x+logx𝑂1y1+∞1y
10 2 4 9 rpgecld x+logx𝑂1y1+∞y+
11 10 ex x+logx𝑂1y1+∞y+
12 11 ssrdv x+logx𝑂11+∞+
13 fveq2 x=ylogx=logy
14 13 cbvmptv x+logx=y+logy
15 14 eleq1i x+logx𝑂1y+logy𝑂1
16 15 biimpi x+logx𝑂1y+logy𝑂1
17 12 16 o1res2 x+logx𝑂1y1+∞logy𝑂1
18 1red x+logx𝑂11
19 18 rexrd x+logx𝑂11*
20 18 renepnfd x+logx𝑂11+∞
21 ioopnfsup 1*1+∞sup1+∞*<=+∞
22 19 20 21 syl2anc x+logx𝑂1sup1+∞*<=+∞
23 divlogrlim y1+∞1logy0
24 23 a1i x+logx𝑂1y1+∞1logy0
25 2 8 rplogcld x+logx𝑂1y1+∞logy+
26 25 rpcnd x+logx𝑂1y1+∞logy
27 25 rpne0d x+logx𝑂1y1+∞logy0
28 22 24 26 27 rlimno1 x+logx𝑂1¬y1+∞logy𝑂1
29 17 28 pm2.65i ¬x+logx𝑂1