| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2vmadivsum.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | 2vmadivsum.2 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  −  ( log ‘ 𝑦 ) ) )  ≤  𝐴 ) | 
						
							| 3 |  | vmalogdivsum2 | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 5 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 6 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 8 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 10 | 9 7 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 11 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 12 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 14 |  | vmacl | ⊢ ( 𝑚  ∈  ℕ  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 16 | 15 13 | nndivred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( Λ ‘ 𝑚 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 17 | 11 16 | fsumrecl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 18 | 10 17 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 19 | 5 18 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 20 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 22 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑥 ) | 
						
							| 25 | 21 24 | rplogcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 26 | 19 25 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 27 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 29 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 30 | 29 21 24 | ltled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 31 | 21 28 30 | rpgecld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 32 | 31 | relogcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 33 | 32 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℝ ) | 
						
							| 34 | 26 33 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℂ ) | 
						
							| 36 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 37 | 7 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 38 | 36 37 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 39 | 38 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 40 | 10 39 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 41 | 5 40 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 42 | 41 25 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 43 | 42 33 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℝ ) | 
						
							| 44 | 43 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℂ ) | 
						
							| 45 | 19 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 46 | 41 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 47 | 32 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 48 | 25 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ≠  0 ) | 
						
							| 49 | 45 46 47 48 | divsubdird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 50 | 10 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 51 | 17 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  ∈  ℂ ) | 
						
							| 52 | 39 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 53 | 50 51 52 | subdid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 54 | 53 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 55 | 18 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 56 | 40 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 57 | 5 55 56 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 58 | 54 57 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 59 | 58 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 60 | 26 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 61 | 42 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 62 | 33 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℂ ) | 
						
							| 63 | 60 61 62 | nnncan2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 64 | 49 59 63 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) ) | 
						
							| 65 | 64 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) ) ) | 
						
							| 66 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 67 | 5 10 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 68 | 67 25 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 69 | 1 | rpred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℝ ) | 
						
							| 71 |  | ioossre | ⊢ ( 1 (,) +∞ )  ⊆  ℝ | 
						
							| 72 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 73 |  | o1const | ⊢ ( ( ( 1 (,) +∞ )  ⊆  ℝ  ∧  1  ∈  ℂ )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 74 | 71 72 73 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 75 | 68 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 76 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℂ ) | 
						
							| 77 | 67 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 78 | 77 47 47 48 | divsubdird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 79 | 77 47 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 80 | 79 47 48 | divrecd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 81 | 47 48 | dividd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) )  =  1 ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) | 
						
							| 83 | 78 80 82 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) | 
						
							| 84 | 83 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) ) | 
						
							| 85 | 67 32 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 86 | 29 25 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 87 | 31 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ+ ) ) | 
						
							| 88 | 87 | ssrdv | ⊢ ( 𝜑  →  ( 1 (,) +∞ )  ⊆  ℝ+ ) | 
						
							| 89 |  | vmadivsum | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) | 
						
							| 90 | 89 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 91 | 88 90 | o1res2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 92 |  | divlogrlim | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0 | 
						
							| 93 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 94 | 92 93 | mp1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 95 | 85 86 91 94 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 96 | 84 95 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) )  ∈  𝑂(1) ) | 
						
							| 97 | 75 76 96 | o1dif | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) ) | 
						
							| 98 | 74 97 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 99 | 69 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 100 |  | o1const | ⊢ ( ( ( 1 (,) +∞ )  ⊆  ℝ  ∧  𝐴  ∈  ℂ )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  𝐴 )  ∈  𝑂(1) ) | 
						
							| 101 | 71 99 100 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  𝐴 )  ∈  𝑂(1) ) | 
						
							| 102 | 68 70 98 101 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) )  ∈  𝑂(1) ) | 
						
							| 103 | 68 70 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 )  ∈  ℝ ) | 
						
							| 104 | 17 39 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 105 | 10 104 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 106 | 5 105 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 107 | 106 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 108 | 107 47 48 | divcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 109 | 107 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 110 | 67 70 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 )  ∈  ℝ ) | 
						
							| 111 | 105 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 112 | 111 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 113 | 5 112 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 114 | 5 111 | fsumabs | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 115 | 70 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 116 | 10 115 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 )  ∈  ℝ ) | 
						
							| 117 | 104 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 118 | 50 117 | absmuld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( ( abs ‘ ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 119 |  | vmage0 | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 120 | 7 119 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 121 | 9 37 120 | divge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 122 | 10 121 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  =  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 123 | 122 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 124 | 118 123 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 125 | 117 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 126 |  | fveq2 | ⊢ ( 𝑖  =  𝑚  →  ( Λ ‘ 𝑖 )  =  ( Λ ‘ 𝑚 ) ) | 
						
							| 127 |  | id | ⊢ ( 𝑖  =  𝑚  →  𝑖  =  𝑚 ) | 
						
							| 128 | 126 127 | oveq12d | ⊢ ( 𝑖  =  𝑚  →  ( ( Λ ‘ 𝑖 )  /  𝑖 )  =  ( ( Λ ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 129 | 128 | cbvsumv | ⊢ Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) | 
						
							| 130 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ⌊ ‘ 𝑦 )  =  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 131 | 130 | oveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  =  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 132 | 131 | sumeq1d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 133 | 129 132 | eqtrid | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 134 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( log ‘ 𝑦 )  =  ( log ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 135 | 133 134 | oveq12d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  −  ( log ‘ 𝑦 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 136 | 135 | fveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  −  ( log ‘ 𝑦 ) ) )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 137 | 136 | breq1d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  −  ( log ‘ 𝑦 ) ) )  ≤  𝐴  ↔  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  𝐴 ) ) | 
						
							| 138 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  /  𝑖 )  −  ( log ‘ 𝑦 ) ) )  ≤  𝐴 ) | 
						
							| 139 | 38 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 140 | 7 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 141 | 140 | mullidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  =  𝑛 ) | 
						
							| 142 |  | fznnfl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 143 | 21 142 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 144 | 143 | simplbda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≤  𝑥 ) | 
						
							| 145 | 141 144 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  ≤  𝑥 ) | 
						
							| 146 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 147 | 21 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 148 | 146 147 37 | lemuldivd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 1  ·  𝑛 )  ≤  𝑥  ↔  1  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 149 | 145 148 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 150 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 151 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( ( 𝑥  /  𝑛 )  ∈  ( 1 [,) +∞ )  ↔  ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  1  ≤  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 152 | 150 151 | ax-mp | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ( 1 [,) +∞ )  ↔  ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  1  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 153 | 139 149 152 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ( 1 [,) +∞ ) ) | 
						
							| 154 | 137 138 153 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  𝐴 ) | 
						
							| 155 | 125 115 10 121 154 | lemul2ad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 ) ) | 
						
							| 156 | 124 155 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 ) ) | 
						
							| 157 | 5 112 116 156 | fsumle | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 ) ) | 
						
							| 158 | 99 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 159 | 5 158 50 | fsummulc1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 ) ) | 
						
							| 160 | 157 159 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 ) ) | 
						
							| 161 | 109 113 110 114 160 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 ) ) | 
						
							| 162 | 109 110 25 161 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  ≤  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 163 | 107 47 48 | absdivd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( abs ‘ ( log ‘ 𝑥 ) ) ) ) | 
						
							| 164 | 25 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 165 | 32 164 | absidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( log ‘ 𝑥 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 166 | 165 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( abs ‘ ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 167 | 163 166 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 168 | 5 10 121 | fsumge0 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 169 | 67 25 168 | divge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 170 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 171 | 170 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  𝐴 ) | 
						
							| 172 | 68 70 169 171 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) ) | 
						
							| 173 | 103 172 | absidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) ) | 
						
							| 174 | 77 158 47 48 | div23d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) ) | 
						
							| 175 | 173 174 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  𝐴 )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 176 | 162 167 175 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) ) ) | 
						
							| 177 | 176 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 (,) +∞ )  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ·  𝐴 ) ) ) | 
						
							| 178 | 66 102 103 108 177 | o1le | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 )  −  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 179 | 65 178 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  −  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 180 | 35 44 179 | o1dif | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) ) | 
						
							| 181 | 4 180 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  /  𝑚 ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) |