| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 3 |  | pntrlog2bndlem3.1 |  |-  ( ph -> A e. RR+ ) | 
						
							| 4 |  | pntrlog2bndlem3.2 |  |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A ) | 
						
							| 5 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 6 | 3 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) | 
						
							| 8 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 9 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 11 | 10 | nnred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) | 
						
							| 12 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 14 |  | 1rp |  |-  1 e. RR+ | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 16 |  | 1red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 17 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 19 | 18 | simpld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 20 | 16 13 19 | ltled |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 21 | 13 15 20 | rpgecld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 23 | 10 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 24 | 14 | a1i |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR+ ) | 
						
							| 25 | 23 24 | rpaddcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. RR+ ) | 
						
							| 26 | 22 25 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. RR+ ) | 
						
							| 27 | 2 | pntrf |  |-  R : RR+ --> RR | 
						
							| 28 | 27 | ffvelcdmi |  |-  ( ( x / ( n + 1 ) ) e. RR+ -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 29 | 26 28 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 30 | 29 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 31 | 22 23 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 32 | 27 | ffvelcdmi |  |-  ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 34 | 33 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) | 
						
							| 35 | 30 34 | subcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) e. CC ) | 
						
							| 36 | 35 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) e. RR ) | 
						
							| 37 | 11 36 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 38 | 8 37 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 39 | 13 19 | rplogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 40 | 21 39 | rpmulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) | 
						
							| 41 | 38 40 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 42 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 43 | 3 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 44 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ A e. CC ) -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) | 
						
							| 45 | 42 43 44 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) | 
						
							| 46 |  | chpo1ubb |  |-  E. c e. RR+ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) | 
						
							| 47 |  | simpl |  |-  ( ( c e. RR+ /\ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) -> c e. RR+ ) | 
						
							| 48 |  | simpr |  |-  ( ( c e. RR+ /\ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) -> A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) | 
						
							| 49 | 1 2 47 48 | pntrlog2bndlem2 |  |-  ( ( c e. RR+ /\ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 50 | 49 | rexlimiva |  |-  ( E. c e. RR+ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 51 | 46 50 | mp1i |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 52 | 7 41 45 51 | o1mul2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. O(1) ) | 
						
							| 53 | 7 41 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) | 
						
							| 54 | 34 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) | 
						
							| 55 | 30 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) e. RR ) | 
						
							| 56 | 54 55 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. RR ) | 
						
							| 57 | 1 | pntsf |  |-  S : RR --> RR | 
						
							| 58 | 57 | ffvelcdmi |  |-  ( n e. RR -> ( S ` n ) e. RR ) | 
						
							| 59 | 11 58 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. RR ) | 
						
							| 60 |  | 2re |  |-  2 e. RR | 
						
							| 61 | 60 | a1i |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. RR ) | 
						
							| 62 | 23 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 63 | 11 62 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( log ` n ) ) e. RR ) | 
						
							| 64 | 61 63 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( n x. ( log ` n ) ) ) e. RR ) | 
						
							| 65 | 59 64 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. RR ) | 
						
							| 66 | 56 65 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) | 
						
							| 67 | 8 66 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) | 
						
							| 68 | 67 40 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 69 | 68 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) | 
						
							| 70 | 69 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) | 
						
							| 71 | 53 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. CC ) | 
						
							| 72 | 71 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. RR ) | 
						
							| 73 | 67 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) | 
						
							| 74 | 73 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) | 
						
							| 75 | 7 38 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) e. RR ) | 
						
							| 76 | 66 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) | 
						
							| 77 | 76 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) | 
						
							| 78 | 8 77 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) | 
						
							| 79 | 8 76 | fsumabs |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) | 
						
							| 80 | 7 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) | 
						
							| 81 | 80 37 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) e. RR ) | 
						
							| 82 | 56 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. CC ) | 
						
							| 83 | 82 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) e. RR ) | 
						
							| 84 | 65 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. CC ) | 
						
							| 85 | 84 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) | 
						
							| 86 | 80 11 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. n ) e. RR ) | 
						
							| 87 | 82 | absge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) ) | 
						
							| 88 | 84 | absge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 89 | 34 30 | abs2difabsd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) <_ ( abs ` ( ( R ` ( x / n ) ) - ( R ` ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 90 | 34 30 | abssubd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) - ( R ` ( x / ( n + 1 ) ) ) ) ) = ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) | 
						
							| 91 | 89 90 | breqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) <_ ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) | 
						
							| 92 | 59 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. CC ) | 
						
							| 93 | 11 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 94 | 10 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 95 | 92 93 94 | divcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) / n ) e. CC ) | 
						
							| 96 |  | 2cnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) | 
						
							| 97 | 62 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 98 | 96 97 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` n ) ) e. CC ) | 
						
							| 99 | 95 98 | subcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) e. CC ) | 
						
							| 100 | 99 93 | absmuld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) ) = ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. ( abs ` n ) ) ) | 
						
							| 101 | 95 98 93 | subdird |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) = ( ( ( ( S ` n ) / n ) x. n ) - ( ( 2 x. ( log ` n ) ) x. n ) ) ) | 
						
							| 102 | 92 93 94 | divcan1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) / n ) x. n ) = ( S ` n ) ) | 
						
							| 103 | 96 93 97 | mul32d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. n ) x. ( log ` n ) ) = ( ( 2 x. ( log ` n ) ) x. n ) ) | 
						
							| 104 | 96 93 97 | mulassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. n ) x. ( log ` n ) ) = ( 2 x. ( n x. ( log ` n ) ) ) ) | 
						
							| 105 | 103 104 | eqtr3d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( log ` n ) ) x. n ) = ( 2 x. ( n x. ( log ` n ) ) ) ) | 
						
							| 106 | 102 105 | oveq12d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( S ` n ) / n ) x. n ) - ( ( 2 x. ( log ` n ) ) x. n ) ) = ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) | 
						
							| 107 | 101 106 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) = ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) | 
						
							| 108 | 107 | fveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) ) = ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) | 
						
							| 109 | 23 | rpge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ n ) | 
						
							| 110 | 11 109 | absidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` n ) = n ) | 
						
							| 111 | 110 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. ( abs ` n ) ) = ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. n ) ) | 
						
							| 112 | 100 108 111 | 3eqtr3d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) = ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. n ) ) | 
						
							| 113 | 99 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) e. RR ) | 
						
							| 114 |  | fveq2 |  |-  ( y = n -> ( S ` y ) = ( S ` n ) ) | 
						
							| 115 |  | id |  |-  ( y = n -> y = n ) | 
						
							| 116 | 114 115 | oveq12d |  |-  ( y = n -> ( ( S ` y ) / y ) = ( ( S ` n ) / n ) ) | 
						
							| 117 |  | fveq2 |  |-  ( y = n -> ( log ` y ) = ( log ` n ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( y = n -> ( 2 x. ( log ` y ) ) = ( 2 x. ( log ` n ) ) ) | 
						
							| 119 | 116 118 | oveq12d |  |-  ( y = n -> ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) = ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) | 
						
							| 120 | 119 | fveq2d |  |-  ( y = n -> ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) = ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) ) | 
						
							| 121 | 120 | breq1d |  |-  ( y = n -> ( ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A <-> ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) <_ A ) ) | 
						
							| 122 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A ) | 
						
							| 123 | 10 | nnge1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) | 
						
							| 124 |  | 1re |  |-  1 e. RR | 
						
							| 125 |  | elicopnf |  |-  ( 1 e. RR -> ( n e. ( 1 [,) +oo ) <-> ( n e. RR /\ 1 <_ n ) ) ) | 
						
							| 126 | 124 125 | ax-mp |  |-  ( n e. ( 1 [,) +oo ) <-> ( n e. RR /\ 1 <_ n ) ) | 
						
							| 127 | 11 123 126 | sylanbrc |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. ( 1 [,) +oo ) ) | 
						
							| 128 | 121 122 127 | rspcdva |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) <_ A ) | 
						
							| 129 | 113 80 11 109 128 | lemul1ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. n ) <_ ( A x. n ) ) | 
						
							| 130 | 112 129 | eqbrtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) <_ ( A x. n ) ) | 
						
							| 131 | 83 36 85 86 87 88 91 130 | lemul12ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) x. ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) x. ( A x. n ) ) ) | 
						
							| 132 | 82 84 | absmuld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) = ( ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) x. ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) | 
						
							| 133 | 43 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. CC ) | 
						
							| 134 | 36 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) e. CC ) | 
						
							| 135 | 133 93 134 | mulassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. n ) x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) = ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) | 
						
							| 136 | 133 93 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. n ) e. CC ) | 
						
							| 137 | 136 134 | mulcomd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. n ) x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) = ( ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) x. ( A x. n ) ) ) | 
						
							| 138 | 135 137 | eqtr3d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) = ( ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) x. ( A x. n ) ) ) | 
						
							| 139 | 131 132 138 | 3brtr4d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) | 
						
							| 140 | 8 77 81 139 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) | 
						
							| 141 | 43 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. CC ) | 
						
							| 142 | 37 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. CC ) | 
						
							| 143 | 8 141 142 | fsummulc2 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) | 
						
							| 144 | 140 143 | breqtrrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) | 
						
							| 145 | 74 78 75 79 144 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) | 
						
							| 146 | 74 75 40 145 | lediv1dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) <_ ( ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 147 | 40 | rpcnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) | 
						
							| 148 | 40 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) | 
						
							| 149 | 73 147 148 | absdivd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) ) | 
						
							| 150 | 40 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) | 
						
							| 151 | 40 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( x x. ( log ` x ) ) ) | 
						
							| 152 | 150 151 | absidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( x x. ( log ` x ) ) ) = ( x x. ( log ` x ) ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 154 | 149 153 | eqtr2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 155 | 38 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. CC ) | 
						
							| 156 | 141 155 147 148 | divassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 157 | 146 154 156 | 3brtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 158 | 53 | leabsd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) | 
						
							| 159 | 70 53 72 157 158 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) | 
						
							| 160 | 159 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) | 
						
							| 161 | 5 52 53 69 160 | o1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |