| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 3 |  | pntrlog2bndlem2.1 |  |-  ( ph -> A e. RR+ ) | 
						
							| 4 |  | pntrlog2bndlem2.2 |  |-  ( ph -> A. y e. RR+ ( psi ` y ) <_ ( A x. y ) ) | 
						
							| 5 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 6 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 8 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. CC ) | 
						
							| 11 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 13 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 15 | 14 | peano2nnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. NN ) | 
						
							| 16 | 12 15 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. RR ) | 
						
							| 17 |  | chpcl |  |-  ( ( x / ( n + 1 ) ) e. RR -> ( psi ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 19 | 18 16 | readdcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 20 | 11 19 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 22 | 7 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 23 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 25 | 24 | simpld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 26 | 7 25 | rplogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 27 | 26 | rpcnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 28 | 22 27 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) | 
						
							| 29 |  | 1rp |  |-  1 e. RR+ | 
						
							| 30 | 29 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 31 |  | 1red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 32 | 31 7 25 | ltled |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 33 | 7 30 32 | rpgecld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 34 | 33 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 35 | 26 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 36 | 22 27 34 35 | mulne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) | 
						
							| 37 | 10 21 28 36 | divdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( psi ` x ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 38 | 37 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( psi ` x ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) | 
						
							| 39 | 33 26 | rpmulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) | 
						
							| 40 | 9 39 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 41 | 20 39 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 42 | 10 22 27 34 35 | divdiv1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) / x ) / ( log ` x ) ) = ( ( psi ` x ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 43 | 9 33 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) / x ) e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) / x ) e. CC ) | 
						
							| 45 | 44 27 35 | divrecd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) / x ) / ( log ` x ) ) = ( ( ( psi ` x ) / x ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 46 | 42 45 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) / ( x x. ( log ` x ) ) ) = ( ( ( psi ` x ) / x ) x. ( 1 / ( log ` x ) ) ) ) | 
						
							| 47 | 46 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( psi ` x ) / ( x x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( psi ` x ) / x ) x. ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 48 | 26 | rprecred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 49 | 33 | ex |  |-  ( ph -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 50 | 49 | ssrdv |  |-  ( ph -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 51 |  | chpo1ub |  |-  ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) | 
						
							| 52 | 51 | a1i |  |-  ( ph -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) ) | 
						
							| 53 | 50 52 | o1res2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( psi ` x ) / x ) ) e. O(1) ) | 
						
							| 54 |  | divlogrlim |  |-  ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 | 
						
							| 55 |  | rlimo1 |  |-  ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 56 | 54 55 | mp1i |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) | 
						
							| 57 | 43 48 53 56 | o1mul2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( psi ` x ) / x ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 58 | 47 57 | eqeltrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( psi ` x ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 59 | 3 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 60 | 59 5 | readdcld |  |-  ( ph -> ( A + 1 ) e. RR ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A + 1 ) e. RR ) | 
						
							| 62 | 31 48 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. RR ) | 
						
							| 63 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 64 | 60 | recnd |  |-  ( ph -> ( A + 1 ) e. CC ) | 
						
							| 65 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ ( A + 1 ) e. CC ) -> ( x e. ( 1 (,) +oo ) |-> ( A + 1 ) ) e. O(1) ) | 
						
							| 66 | 63 64 65 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( A + 1 ) ) e. O(1) ) | 
						
							| 67 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 68 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) | 
						
							| 69 | 63 67 68 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) | 
						
							| 70 | 31 48 69 56 | o1add2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 + ( 1 / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 71 | 61 62 66 70 | o1mul2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) e. O(1) ) | 
						
							| 72 | 61 62 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) e. RR ) | 
						
							| 73 | 41 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) | 
						
							| 74 |  | chpge0 |  |-  ( ( x / ( n + 1 ) ) e. RR -> 0 <_ ( psi ` ( x / ( n + 1 ) ) ) ) | 
						
							| 75 | 16 74 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( psi ` ( x / ( n + 1 ) ) ) ) | 
						
							| 76 | 14 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 77 | 29 | a1i |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR+ ) | 
						
							| 78 | 76 77 | rpaddcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. RR+ ) | 
						
							| 79 | 33 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 80 | 79 | rpge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ x ) | 
						
							| 81 | 12 78 80 | divge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( x / ( n + 1 ) ) ) | 
						
							| 82 | 18 16 75 81 | addge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 83 | 11 19 82 | fsumge0 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 84 | 20 39 83 | divge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 85 | 41 84 | absidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 86 | 72 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) e. CC ) | 
						
							| 87 | 86 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) e. RR ) | 
						
							| 88 | 20 33 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / x ) e. RR ) | 
						
							| 89 | 33 | relogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 90 | 89 31 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. RR ) | 
						
							| 91 | 61 90 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) e. RR ) | 
						
							| 92 | 61 7 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. x ) e. RR ) | 
						
							| 93 | 14 | nnrecred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 94 | 11 93 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) | 
						
							| 95 | 92 94 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. x ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) e. RR ) | 
						
							| 96 | 92 90 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. x ) x. ( ( log ` x ) + 1 ) ) e. RR ) | 
						
							| 97 | 59 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) | 
						
							| 98 |  | 1red |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 99 | 97 98 | readdcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A + 1 ) e. RR ) | 
						
							| 100 | 99 12 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A + 1 ) x. x ) e. RR ) | 
						
							| 101 | 100 93 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) x. ( 1 / n ) ) e. RR ) | 
						
							| 102 | 100 15 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) / ( n + 1 ) ) e. RR ) | 
						
							| 103 | 100 14 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) / n ) e. RR ) | 
						
							| 104 | 97 16 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 105 |  | fveq2 |  |-  ( y = ( x / ( n + 1 ) ) -> ( psi ` y ) = ( psi ` ( x / ( n + 1 ) ) ) ) | 
						
							| 106 |  | oveq2 |  |-  ( y = ( x / ( n + 1 ) ) -> ( A x. y ) = ( A x. ( x / ( n + 1 ) ) ) ) | 
						
							| 107 | 105 106 | breq12d |  |-  ( y = ( x / ( n + 1 ) ) -> ( ( psi ` y ) <_ ( A x. y ) <-> ( psi ` ( x / ( n + 1 ) ) ) <_ ( A x. ( x / ( n + 1 ) ) ) ) ) | 
						
							| 108 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. RR+ ( psi ` y ) <_ ( A x. y ) ) | 
						
							| 109 | 79 78 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. RR+ ) | 
						
							| 110 | 107 108 109 | rspcdva |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / ( n + 1 ) ) ) <_ ( A x. ( x / ( n + 1 ) ) ) ) | 
						
							| 111 | 18 104 16 110 | leadd1dd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( A x. ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 112 | 64 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A + 1 ) e. CC ) | 
						
							| 113 | 22 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 114 | 14 | nncnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 115 |  | 1cnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 116 | 114 115 | addcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. CC ) | 
						
							| 117 | 15 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) =/= 0 ) | 
						
							| 118 | 112 113 116 117 | divassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) / ( n + 1 ) ) = ( ( A + 1 ) x. ( x / ( n + 1 ) ) ) ) | 
						
							| 119 | 97 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. CC ) | 
						
							| 120 | 113 116 117 | divcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. CC ) | 
						
							| 121 | 119 115 120 | adddird |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A + 1 ) x. ( x / ( n + 1 ) ) ) = ( ( A x. ( x / ( n + 1 ) ) ) + ( 1 x. ( x / ( n + 1 ) ) ) ) ) | 
						
							| 122 | 120 | mullidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( x / ( n + 1 ) ) ) = ( x / ( n + 1 ) ) ) | 
						
							| 123 | 122 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. ( x / ( n + 1 ) ) ) + ( 1 x. ( x / ( n + 1 ) ) ) ) = ( ( A x. ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 124 | 118 121 123 | 3eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) / ( n + 1 ) ) = ( ( A x. ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 125 | 111 124 | breqtrrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. x ) / ( n + 1 ) ) ) | 
						
							| 126 | 59 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) | 
						
							| 127 | 3 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) | 
						
							| 128 | 127 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ A ) | 
						
							| 129 | 30 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 1 ) | 
						
							| 130 | 126 31 128 129 | addge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( A + 1 ) ) | 
						
							| 131 | 33 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ x ) | 
						
							| 132 | 61 7 130 131 | mulge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( ( A + 1 ) x. x ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( A + 1 ) x. x ) ) | 
						
							| 134 | 14 | nnred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) | 
						
							| 135 | 134 | lep1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ ( n + 1 ) ) | 
						
							| 136 | 76 78 100 133 135 | lediv2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) / ( n + 1 ) ) <_ ( ( ( A + 1 ) x. x ) / n ) ) | 
						
							| 137 | 19 102 103 125 136 | letrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. x ) / n ) ) | 
						
							| 138 | 100 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A + 1 ) x. x ) e. CC ) | 
						
							| 139 | 14 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 140 | 138 114 139 | divrecd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( A + 1 ) x. x ) / n ) = ( ( ( A + 1 ) x. x ) x. ( 1 / n ) ) ) | 
						
							| 141 | 137 140 | breqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. x ) x. ( 1 / n ) ) ) | 
						
							| 142 | 11 19 101 141 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( A + 1 ) x. x ) x. ( 1 / n ) ) ) | 
						
							| 143 | 92 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. x ) e. CC ) | 
						
							| 144 | 114 139 | reccld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 145 | 11 143 144 | fsummulc2 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. x ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( A + 1 ) x. x ) x. ( 1 / n ) ) ) | 
						
							| 146 | 142 145 | breqtrrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. x ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) ) | 
						
							| 147 |  | harmonicubnd |  |-  ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 148 | 7 32 147 | syl2anc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 149 | 94 90 92 132 148 | lemul2ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. x ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) <_ ( ( ( A + 1 ) x. x ) x. ( ( log ` x ) + 1 ) ) ) | 
						
							| 150 | 20 95 96 146 149 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. x ) x. ( ( log ` x ) + 1 ) ) ) | 
						
							| 151 | 64 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A + 1 ) e. CC ) | 
						
							| 152 | 90 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. CC ) | 
						
							| 153 | 151 22 152 | mul32d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. x ) x. ( ( log ` x ) + 1 ) ) = ( ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) x. x ) ) | 
						
							| 154 | 150 153 | breqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) x. x ) ) | 
						
							| 155 | 20 91 33 | ledivmul2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / x ) <_ ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) <-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) <_ ( ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) x. x ) ) ) | 
						
							| 156 | 154 155 | mpbird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / x ) <_ ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) ) | 
						
							| 157 | 88 91 26 156 | lediv1dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / x ) / ( log ` x ) ) <_ ( ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) / ( log ` x ) ) ) | 
						
							| 158 | 21 22 27 34 35 | divdiv1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / x ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 159 |  | 1cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) | 
						
							| 160 | 27 159 | addcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. CC ) | 
						
							| 161 | 151 160 27 35 | divassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) / ( log ` x ) ) = ( ( A + 1 ) x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) | 
						
							| 162 | 27 159 27 35 | divdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) / ( log ` x ) ) = ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) ) | 
						
							| 163 | 27 35 | dividd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) | 
						
							| 164 | 163 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) = ( 1 + ( 1 / ( log ` x ) ) ) ) | 
						
							| 165 | 162 164 | eqtr2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) = ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) | 
						
							| 166 | 165 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( A + 1 ) x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) | 
						
							| 167 | 161 166 | eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( A + 1 ) x. ( ( log ` x ) + 1 ) ) / ( log ` x ) ) = ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 168 | 157 158 167 | 3brtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) <_ ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) | 
						
							| 169 | 72 | leabsd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) <_ ( abs ` ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) ) | 
						
							| 170 | 41 72 87 168 169 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) <_ ( abs ` ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) ) | 
						
							| 171 | 85 170 | eqbrtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) ) | 
						
							| 172 | 171 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( ( A + 1 ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) ) | 
						
							| 173 | 5 71 72 73 172 | o1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 174 | 40 41 58 173 | o1add2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( psi ` x ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. O(1) ) | 
						
							| 175 | 38 174 | eqeltrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 176 | 9 20 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) e. RR ) | 
						
							| 177 | 176 39 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 178 | 2 | pntrf |  |-  R : RR+ --> RR | 
						
							| 179 | 178 | ffvelcdmi |  |-  ( ( x / ( n + 1 ) ) e. RR+ -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 180 | 109 179 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) | 
						
							| 181 | 180 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 182 | 79 76 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 183 | 178 | ffvelcdmi |  |-  ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 184 | 182 183 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 185 | 184 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) | 
						
							| 186 | 181 185 | subcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) e. CC ) | 
						
							| 187 | 186 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) e. RR ) | 
						
							| 188 | 134 187 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 189 | 11 188 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 190 | 189 39 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 191 | 190 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) | 
						
							| 192 | 76 | rpge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ n ) | 
						
							| 193 | 186 | absge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) | 
						
							| 194 | 134 187 192 193 | mulge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) | 
						
							| 195 | 11 188 194 | fsumge0 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) | 
						
							| 196 | 189 39 195 | divge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 197 | 190 196 | absidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 198 | 10 21 | addcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) e. CC ) | 
						
							| 199 | 198 28 36 | divcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) | 
						
							| 200 | 199 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) | 
						
							| 201 | 12 14 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 202 |  | chpcl |  |-  ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 203 | 201 202 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 204 | 203 201 | readdcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) + ( x / n ) ) e. RR ) | 
						
							| 205 | 204 19 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) e. RR ) | 
						
							| 206 | 134 205 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) e. RR ) | 
						
							| 207 | 2 | pntrval |  |-  ( ( x / ( n + 1 ) ) e. RR+ -> ( R ` ( x / ( n + 1 ) ) ) = ( ( psi ` ( x / ( n + 1 ) ) ) - ( x / ( n + 1 ) ) ) ) | 
						
							| 208 | 109 207 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) = ( ( psi ` ( x / ( n + 1 ) ) ) - ( x / ( n + 1 ) ) ) ) | 
						
							| 209 | 2 | pntrval |  |-  ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) = ( ( psi ` ( x / n ) ) - ( x / n ) ) ) | 
						
							| 210 | 182 209 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) = ( ( psi ` ( x / n ) ) - ( x / n ) ) ) | 
						
							| 211 | 208 210 | oveq12d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) = ( ( ( psi ` ( x / ( n + 1 ) ) ) - ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) - ( x / n ) ) ) ) | 
						
							| 212 | 18 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 213 | 203 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) | 
						
							| 214 | 113 114 139 | divcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 215 | 212 120 213 214 | sub4d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( x / ( n + 1 ) ) ) - ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) - ( x / n ) ) ) = ( ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) - ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) | 
						
							| 216 | 211 215 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) = ( ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) - ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) | 
						
							| 217 | 216 | fveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) = ( abs ` ( ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) - ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) ) | 
						
							| 218 | 212 213 | subcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) e. CC ) | 
						
							| 219 | 120 214 | subcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / ( n + 1 ) ) - ( x / n ) ) e. CC ) | 
						
							| 220 | 218 219 | abs2dif2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) - ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) <_ ( ( abs ` ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) ) + ( abs ` ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) ) | 
						
							| 221 | 217 220 | eqbrtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) <_ ( ( abs ` ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) ) + ( abs ` ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) ) | 
						
							| 222 | 76 78 12 80 135 | lediv2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) <_ ( x / n ) ) | 
						
							| 223 |  | chpwordi |  |-  ( ( ( x / ( n + 1 ) ) e. RR /\ ( x / n ) e. RR /\ ( x / ( n + 1 ) ) <_ ( x / n ) ) -> ( psi ` ( x / ( n + 1 ) ) ) <_ ( psi ` ( x / n ) ) ) | 
						
							| 224 | 16 201 222 223 | syl3anc |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / ( n + 1 ) ) ) <_ ( psi ` ( x / n ) ) ) | 
						
							| 225 | 18 203 224 | abssuble0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) ) = ( ( psi ` ( x / n ) ) - ( psi ` ( x / ( n + 1 ) ) ) ) ) | 
						
							| 226 | 16 201 222 | abssuble0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( x / ( n + 1 ) ) - ( x / n ) ) ) = ( ( x / n ) - ( x / ( n + 1 ) ) ) ) | 
						
							| 227 | 225 226 | oveq12d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) ) + ( abs ` ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) = ( ( ( psi ` ( x / n ) ) - ( psi ` ( x / ( n + 1 ) ) ) ) + ( ( x / n ) - ( x / ( n + 1 ) ) ) ) ) | 
						
							| 228 | 213 214 212 120 | addsub4d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = ( ( ( psi ` ( x / n ) ) - ( psi ` ( x / ( n + 1 ) ) ) ) + ( ( x / n ) - ( x / ( n + 1 ) ) ) ) ) | 
						
							| 229 | 227 228 | eqtr4d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( psi ` ( x / ( n + 1 ) ) ) - ( psi ` ( x / n ) ) ) ) + ( abs ` ( ( x / ( n + 1 ) ) - ( x / n ) ) ) ) = ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 230 | 221 229 | breqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) <_ ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 231 | 187 205 134 192 230 | lemul2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) <_ ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 232 | 11 188 206 231 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 233 | 205 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) e. CC ) | 
						
							| 234 | 114 233 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) e. CC ) | 
						
							| 235 | 11 234 | fsumcl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) e. CC ) | 
						
							| 236 | 10 21 | negdi2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> -u ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = ( -u ( psi ` x ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 237 | 33 | rprege0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 238 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 239 |  | nn0p1nn |  |-  ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 240 | 237 238 239 | 3syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 241 | 7 240 | nndivred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. RR ) | 
						
							| 242 |  | 2re |  |-  2 e. RR | 
						
							| 243 | 242 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) | 
						
							| 244 |  | flltp1 |  |-  ( x e. RR -> x < ( ( |_ ` x ) + 1 ) ) | 
						
							| 245 | 7 244 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x < ( ( |_ ` x ) + 1 ) ) | 
						
							| 246 | 240 | nncnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. CC ) | 
						
							| 247 | 246 | mulridd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) x. 1 ) = ( ( |_ ` x ) + 1 ) ) | 
						
							| 248 | 245 247 | breqtrrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x < ( ( ( |_ ` x ) + 1 ) x. 1 ) ) | 
						
							| 249 | 240 | nnrpd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. RR+ ) | 
						
							| 250 | 7 31 249 | ltdivmuld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) < 1 <-> x < ( ( ( |_ ` x ) + 1 ) x. 1 ) ) ) | 
						
							| 251 | 248 250 | mpbird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) < 1 ) | 
						
							| 252 |  | 1lt2 |  |-  1 < 2 | 
						
							| 253 | 252 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < 2 ) | 
						
							| 254 | 241 31 243 251 253 | lttrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) | 
						
							| 255 |  | chpeq0 |  |-  ( ( x / ( ( |_ ` x ) + 1 ) ) e. RR -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 <-> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) ) | 
						
							| 256 | 241 255 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 <-> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) ) | 
						
							| 257 | 254 256 | mpbird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 ) | 
						
							| 258 | 257 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) = ( 0 + ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 259 | 241 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. CC ) | 
						
							| 260 | 259 | addlidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 0 + ( x / ( ( |_ ` x ) + 1 ) ) ) = ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 261 | 258 260 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) = ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 262 | 261 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( ( ( |_ ` x ) + 1 ) x. ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 263 | 240 | nnne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) =/= 0 ) | 
						
							| 264 | 22 246 263 | divcan2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) x. ( x / ( ( |_ ` x ) + 1 ) ) ) = x ) | 
						
							| 265 | 262 264 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) = x ) | 
						
							| 266 | 22 | div1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / 1 ) = x ) | 
						
							| 267 | 266 | fveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( psi ` ( x / 1 ) ) = ( psi ` x ) ) | 
						
							| 268 | 267 266 | oveq12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) = ( ( psi ` x ) + x ) ) | 
						
							| 269 | 268 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) = ( 1 x. ( ( psi ` x ) + x ) ) ) | 
						
							| 270 | 9 7 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) + x ) e. RR ) | 
						
							| 271 | 270 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) + x ) e. CC ) | 
						
							| 272 | 271 | mullidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 x. ( ( psi ` x ) + x ) ) = ( ( psi ` x ) + x ) ) | 
						
							| 273 | 269 272 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) = ( ( psi ` x ) + x ) ) | 
						
							| 274 | 265 273 | oveq12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) - ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) ) = ( x - ( ( psi ` x ) + x ) ) ) | 
						
							| 275 | 271 22 | negsubdi2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> -u ( ( ( psi ` x ) + x ) - x ) = ( x - ( ( psi ` x ) + x ) ) ) | 
						
							| 276 | 10 22 | pncand |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) + x ) - x ) = ( psi ` x ) ) | 
						
							| 277 | 276 | negeqd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> -u ( ( ( psi ` x ) + x ) - x ) = -u ( psi ` x ) ) | 
						
							| 278 | 274 275 277 | 3eqtr2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) - ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) ) = -u ( psi ` x ) ) | 
						
							| 279 | 7 | flcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. ZZ ) | 
						
							| 280 |  | fzval3 |  |-  ( ( |_ ` x ) e. ZZ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 281 | 279 280 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 282 | 281 | eqcomd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ..^ ( ( |_ ` x ) + 1 ) ) = ( 1 ... ( |_ ` x ) ) ) | 
						
							| 283 | 114 115 | pncan2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - n ) = 1 ) | 
						
							| 284 | 283 | oveq1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - n ) x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = ( 1 x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 285 | 19 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 286 | 285 | mullidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 287 | 284 286 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - n ) x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 288 | 282 287 | sumeq12rdv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( n + 1 ) - n ) x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 289 | 278 288 | oveq12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) - ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( n + 1 ) - n ) x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = ( -u ( psi ` x ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 290 |  | oveq2 |  |-  ( m = n -> ( x / m ) = ( x / n ) ) | 
						
							| 291 | 290 | fveq2d |  |-  ( m = n -> ( psi ` ( x / m ) ) = ( psi ` ( x / n ) ) ) | 
						
							| 292 | 291 290 | oveq12d |  |-  ( m = n -> ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / n ) ) + ( x / n ) ) ) | 
						
							| 293 | 292 | ancli |  |-  ( m = n -> ( m = n /\ ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / n ) ) + ( x / n ) ) ) ) | 
						
							| 294 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( x / m ) = ( x / ( n + 1 ) ) ) | 
						
							| 295 | 294 | fveq2d |  |-  ( m = ( n + 1 ) -> ( psi ` ( x / m ) ) = ( psi ` ( x / ( n + 1 ) ) ) ) | 
						
							| 296 | 295 294 | oveq12d |  |-  ( m = ( n + 1 ) -> ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) | 
						
							| 297 | 296 | ancli |  |-  ( m = ( n + 1 ) -> ( m = ( n + 1 ) /\ ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 298 |  | oveq2 |  |-  ( m = 1 -> ( x / m ) = ( x / 1 ) ) | 
						
							| 299 | 298 | fveq2d |  |-  ( m = 1 -> ( psi ` ( x / m ) ) = ( psi ` ( x / 1 ) ) ) | 
						
							| 300 | 299 298 | oveq12d |  |-  ( m = 1 -> ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) | 
						
							| 301 | 300 | ancli |  |-  ( m = 1 -> ( m = 1 /\ ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) ) | 
						
							| 302 |  | oveq2 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( x / m ) = ( x / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 303 | 302 | fveq2d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( psi ` ( x / m ) ) = ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 304 | 303 302 | oveq12d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 305 | 304 | ancli |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( m = ( ( |_ ` x ) + 1 ) /\ ( ( psi ` ( x / m ) ) + ( x / m ) ) = ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) ) | 
						
							| 306 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 307 | 240 306 | eleqtrdi |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 308 |  | elfznn |  |-  ( m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) -> m e. NN ) | 
						
							| 309 | 308 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) | 
						
							| 310 | 309 | nncnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. CC ) | 
						
							| 311 | 7 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> x e. RR ) | 
						
							| 312 | 311 309 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( x / m ) e. RR ) | 
						
							| 313 |  | chpcl |  |-  ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) e. RR ) | 
						
							| 314 | 312 313 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( psi ` ( x / m ) ) e. RR ) | 
						
							| 315 | 314 312 | readdcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( psi ` ( x / m ) ) + ( x / m ) ) e. RR ) | 
						
							| 316 | 315 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( psi ` ( x / m ) ) + ( x / m ) ) e. CC ) | 
						
							| 317 | 293 297 301 305 307 310 316 | fsumparts |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( n x. ( ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) + ( x / n ) ) ) ) = ( ( ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) - ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( n + 1 ) - n ) x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 318 | 213 214 | addcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) + ( x / n ) ) e. CC ) | 
						
							| 319 | 212 120 | addcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) e. CC ) | 
						
							| 320 | 318 319 | negsubdi2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = ( ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) + ( x / n ) ) ) ) | 
						
							| 321 | 320 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. -u ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = ( n x. ( ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) + ( x / n ) ) ) ) ) | 
						
							| 322 | 114 233 | mulneg2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. -u ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = -u ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 323 | 321 322 | eqtr3d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) + ( x / n ) ) ) ) = -u ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 324 | 282 323 | sumeq12rdv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( n x. ( ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) - ( ( psi ` ( x / n ) ) + ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 325 | 317 324 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( |_ ` x ) + 1 ) x. ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) + ( x / ( ( |_ ` x ) + 1 ) ) ) ) - ( 1 x. ( ( psi ` ( x / 1 ) ) + ( x / 1 ) ) ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( n + 1 ) - n ) x. ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 326 | 236 289 325 | 3eqtr2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> -u ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 327 | 11 234 | fsumneg |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) ) | 
						
							| 328 | 326 327 | eqtr2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = -u ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 329 | 235 198 328 | neg11d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( ( ( psi ` ( x / n ) ) + ( x / n ) ) - ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) = ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 330 | 232 329 | breqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) <_ ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) ) | 
						
							| 331 | 189 176 39 330 | lediv1dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) <_ ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 332 | 177 | leabsd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) <_ ( abs ` ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 333 | 190 177 200 331 332 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) <_ ( abs ` ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 334 | 197 333 | eqbrtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 335 | 334 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( ( ( psi ` x ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( psi ` ( x / ( n + 1 ) ) ) + ( x / ( n + 1 ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 336 | 5 175 177 191 335 | o1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |