Metamath Proof Explorer


Theorem pntrlog2bndlem2

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S=ai=1aΛilogi+ψai
pntrlog2bnd.r R=a+ψaa
pntrlog2bndlem2.1 φA+
pntrlog2bndlem2.2 φy+ψyAy
Assertion pntrlog2bndlem2 φx1+∞n=1xnRxn+1Rxnxlogx𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 pntrlog2bnd.r R=a+ψaa
3 pntrlog2bndlem2.1 φA+
4 pntrlog2bndlem2.2 φy+ψyAy
5 1red φ1
6 elioore x1+∞x
7 6 adantl φx1+∞x
8 chpcl xψx
9 7 8 syl φx1+∞ψx
10 9 recnd φx1+∞ψx
11 fzfid φx1+∞1xFin
12 7 adantr φx1+∞n1xx
13 elfznn n1xn
14 13 adantl φx1+∞n1xn
15 14 peano2nnd φx1+∞n1xn+1
16 12 15 nndivred φx1+∞n1xxn+1
17 chpcl xn+1ψxn+1
18 16 17 syl φx1+∞n1xψxn+1
19 18 16 readdcld φx1+∞n1xψxn+1+xn+1
20 11 19 fsumrecl φx1+∞n=1xψxn+1+xn+1
21 20 recnd φx1+∞n=1xψxn+1+xn+1
22 7 recnd φx1+∞x
23 eliooord x1+∞1<xx<+∞
24 23 adantl φx1+∞1<xx<+∞
25 24 simpld φx1+∞1<x
26 7 25 rplogcld φx1+∞logx+
27 26 rpcnd φx1+∞logx
28 22 27 mulcld φx1+∞xlogx
29 1rp 1+
30 29 a1i φx1+∞1+
31 1red φx1+∞1
32 31 7 25 ltled φx1+∞1x
33 7 30 32 rpgecld φx1+∞x+
34 33 rpne0d φx1+∞x0
35 26 rpne0d φx1+∞logx0
36 22 27 34 35 mulne0d φx1+∞xlogx0
37 10 21 28 36 divdird φx1+∞ψx+n=1xψxn+1+xn+1xlogx=ψxxlogx+n=1xψxn+1+xn+1xlogx
38 37 mpteq2dva φx1+∞ψx+n=1xψxn+1+xn+1xlogx=x1+∞ψxxlogx+n=1xψxn+1+xn+1xlogx
39 33 26 rpmulcld φx1+∞xlogx+
40 9 39 rerpdivcld φx1+∞ψxxlogx
41 20 39 rerpdivcld φx1+∞n=1xψxn+1+xn+1xlogx
42 10 22 27 34 35 divdiv1d φx1+∞ψxxlogx=ψxxlogx
43 9 33 rerpdivcld φx1+∞ψxx
44 43 recnd φx1+∞ψxx
45 44 27 35 divrecd φx1+∞ψxxlogx=ψxx1logx
46 42 45 eqtr3d φx1+∞ψxxlogx=ψxx1logx
47 46 mpteq2dva φx1+∞ψxxlogx=x1+∞ψxx1logx
48 26 rprecred φx1+∞1logx
49 33 ex φx1+∞x+
50 49 ssrdv φ1+∞+
51 chpo1ub x+ψxx𝑂1
52 51 a1i φx+ψxx𝑂1
53 50 52 o1res2 φx1+∞ψxx𝑂1
54 divlogrlim x1+∞1logx0
55 rlimo1 x1+∞1logx0x1+∞1logx𝑂1
56 54 55 mp1i φx1+∞1logx𝑂1
57 43 48 53 56 o1mul2 φx1+∞ψxx1logx𝑂1
58 47 57 eqeltrd φx1+∞ψxxlogx𝑂1
59 3 rpred φA
60 59 5 readdcld φA+1
61 60 adantr φx1+∞A+1
62 31 48 readdcld φx1+∞1+1logx
63 ioossre 1+∞
64 60 recnd φA+1
65 o1const 1+∞A+1x1+∞A+1𝑂1
66 63 64 65 sylancr φx1+∞A+1𝑂1
67 1cnd φ1
68 o1const 1+∞1x1+∞1𝑂1
69 63 67 68 sylancr φx1+∞1𝑂1
70 31 48 69 56 o1add2 φx1+∞1+1logx𝑂1
71 61 62 66 70 o1mul2 φx1+∞A+11+1logx𝑂1
72 61 62 remulcld φx1+∞A+11+1logx
73 41 recnd φx1+∞n=1xψxn+1+xn+1xlogx
74 chpge0 xn+10ψxn+1
75 16 74 syl φx1+∞n1x0ψxn+1
76 14 nnrpd φx1+∞n1xn+
77 29 a1i φx1+∞n1x1+
78 76 77 rpaddcld φx1+∞n1xn+1+
79 33 adantr φx1+∞n1xx+
80 79 rpge0d φx1+∞n1x0x
81 12 78 80 divge0d φx1+∞n1x0xn+1
82 18 16 75 81 addge0d φx1+∞n1x0ψxn+1+xn+1
83 11 19 82 fsumge0 φx1+∞0n=1xψxn+1+xn+1
84 20 39 83 divge0d φx1+∞0n=1xψxn+1+xn+1xlogx
85 41 84 absidd φx1+∞n=1xψxn+1+xn+1xlogx=n=1xψxn+1+xn+1xlogx
86 72 recnd φx1+∞A+11+1logx
87 86 abscld φx1+∞A+11+1logx
88 20 33 rerpdivcld φx1+∞n=1xψxn+1+xn+1x
89 33 relogcld φx1+∞logx
90 89 31 readdcld φx1+∞logx+1
91 61 90 remulcld φx1+∞A+1logx+1
92 61 7 remulcld φx1+∞A+1x
93 14 nnrecred φx1+∞n1x1n
94 11 93 fsumrecl φx1+∞n=1x1n
95 92 94 remulcld φx1+∞A+1xn=1x1n
96 92 90 remulcld φx1+∞A+1xlogx+1
97 59 ad2antrr φx1+∞n1xA
98 1red φx1+∞n1x1
99 97 98 readdcld φx1+∞n1xA+1
100 99 12 remulcld φx1+∞n1xA+1x
101 100 93 remulcld φx1+∞n1xA+1x1n
102 100 15 nndivred φx1+∞n1xA+1xn+1
103 100 14 nndivred φx1+∞n1xA+1xn
104 97 16 remulcld φx1+∞n1xAxn+1
105 fveq2 y=xn+1ψy=ψxn+1
106 oveq2 y=xn+1Ay=Axn+1
107 105 106 breq12d y=xn+1ψyAyψxn+1Axn+1
108 4 ad2antrr φx1+∞n1xy+ψyAy
109 79 78 rpdivcld φx1+∞n1xxn+1+
110 107 108 109 rspcdva φx1+∞n1xψxn+1Axn+1
111 18 104 16 110 leadd1dd φx1+∞n1xψxn+1+xn+1Axn+1+xn+1
112 64 ad2antrr φx1+∞n1xA+1
113 22 adantr φx1+∞n1xx
114 14 nncnd φx1+∞n1xn
115 1cnd φx1+∞n1x1
116 114 115 addcld φx1+∞n1xn+1
117 15 nnne0d φx1+∞n1xn+10
118 112 113 116 117 divassd φx1+∞n1xA+1xn+1=A+1xn+1
119 97 recnd φx1+∞n1xA
120 113 116 117 divcld φx1+∞n1xxn+1
121 119 115 120 adddird φx1+∞n1xA+1xn+1=Axn+1+1xn+1
122 120 mullidd φx1+∞n1x1xn+1=xn+1
123 122 oveq2d φx1+∞n1xAxn+1+1xn+1=Axn+1+xn+1
124 118 121 123 3eqtrd φx1+∞n1xA+1xn+1=Axn+1+xn+1
125 111 124 breqtrrd φx1+∞n1xψxn+1+xn+1A+1xn+1
126 59 adantr φx1+∞A
127 3 adantr φx1+∞A+
128 127 rpge0d φx1+∞0A
129 30 rpge0d φx1+∞01
130 126 31 128 129 addge0d φx1+∞0A+1
131 33 rpge0d φx1+∞0x
132 61 7 130 131 mulge0d φx1+∞0A+1x
133 132 adantr φx1+∞n1x0A+1x
134 14 nnred φx1+∞n1xn
135 134 lep1d φx1+∞n1xnn+1
136 76 78 100 133 135 lediv2ad φx1+∞n1xA+1xn+1A+1xn
137 19 102 103 125 136 letrd φx1+∞n1xψxn+1+xn+1A+1xn
138 100 recnd φx1+∞n1xA+1x
139 14 nnne0d φx1+∞n1xn0
140 138 114 139 divrecd φx1+∞n1xA+1xn=A+1x1n
141 137 140 breqtrd φx1+∞n1xψxn+1+xn+1A+1x1n
142 11 19 101 141 fsumle φx1+∞n=1xψxn+1+xn+1n=1xA+1x1n
143 92 recnd φx1+∞A+1x
144 114 139 reccld φx1+∞n1x1n
145 11 143 144 fsummulc2 φx1+∞A+1xn=1x1n=n=1xA+1x1n
146 142 145 breqtrrd φx1+∞n=1xψxn+1+xn+1A+1xn=1x1n
147 harmonicubnd x1xn=1x1nlogx+1
148 7 32 147 syl2anc φx1+∞n=1x1nlogx+1
149 94 90 92 132 148 lemul2ad φx1+∞A+1xn=1x1nA+1xlogx+1
150 20 95 96 146 149 letrd φx1+∞n=1xψxn+1+xn+1A+1xlogx+1
151 64 adantr φx1+∞A+1
152 90 recnd φx1+∞logx+1
153 151 22 152 mul32d φx1+∞A+1xlogx+1=A+1logx+1x
154 150 153 breqtrd φx1+∞n=1xψxn+1+xn+1A+1logx+1x
155 20 91 33 ledivmul2d φx1+∞n=1xψxn+1+xn+1xA+1logx+1n=1xψxn+1+xn+1A+1logx+1x
156 154 155 mpbird φx1+∞n=1xψxn+1+xn+1xA+1logx+1
157 88 91 26 156 lediv1dd φx1+∞n=1xψxn+1+xn+1xlogxA+1logx+1logx
158 21 22 27 34 35 divdiv1d φx1+∞n=1xψxn+1+xn+1xlogx=n=1xψxn+1+xn+1xlogx
159 1cnd φx1+∞1
160 27 159 addcld φx1+∞logx+1
161 151 160 27 35 divassd φx1+∞A+1logx+1logx=A+1logx+1logx
162 27 159 27 35 divdird φx1+∞logx+1logx=logxlogx+1logx
163 27 35 dividd φx1+∞logxlogx=1
164 163 oveq1d φx1+∞logxlogx+1logx=1+1logx
165 162 164 eqtr2d φx1+∞1+1logx=logx+1logx
166 165 oveq2d φx1+∞A+11+1logx=A+1logx+1logx
167 161 166 eqtr4d φx1+∞A+1logx+1logx=A+11+1logx
168 157 158 167 3brtr3d φx1+∞n=1xψxn+1+xn+1xlogxA+11+1logx
169 72 leabsd φx1+∞A+11+1logxA+11+1logx
170 41 72 87 168 169 letrd φx1+∞n=1xψxn+1+xn+1xlogxA+11+1logx
171 85 170 eqbrtrd φx1+∞n=1xψxn+1+xn+1xlogxA+11+1logx
172 171 adantrr φx1+∞1xn=1xψxn+1+xn+1xlogxA+11+1logx
173 5 71 72 73 172 o1le φx1+∞n=1xψxn+1+xn+1xlogx𝑂1
174 40 41 58 173 o1add2 φx1+∞ψxxlogx+n=1xψxn+1+xn+1xlogx𝑂1
175 38 174 eqeltrd φx1+∞ψx+n=1xψxn+1+xn+1xlogx𝑂1
176 9 20 readdcld φx1+∞ψx+n=1xψxn+1+xn+1
177 176 39 rerpdivcld φx1+∞ψx+n=1xψxn+1+xn+1xlogx
178 2 pntrf R:+
179 178 ffvelcdmi xn+1+Rxn+1
180 109 179 syl φx1+∞n1xRxn+1
181 180 recnd φx1+∞n1xRxn+1
182 79 76 rpdivcld φx1+∞n1xxn+
183 178 ffvelcdmi xn+Rxn
184 182 183 syl φx1+∞n1xRxn
185 184 recnd φx1+∞n1xRxn
186 181 185 subcld φx1+∞n1xRxn+1Rxn
187 186 abscld φx1+∞n1xRxn+1Rxn
188 134 187 remulcld φx1+∞n1xnRxn+1Rxn
189 11 188 fsumrecl φx1+∞n=1xnRxn+1Rxn
190 189 39 rerpdivcld φx1+∞n=1xnRxn+1Rxnxlogx
191 190 recnd φx1+∞n=1xnRxn+1Rxnxlogx
192 76 rpge0d φx1+∞n1x0n
193 186 absge0d φx1+∞n1x0Rxn+1Rxn
194 134 187 192 193 mulge0d φx1+∞n1x0nRxn+1Rxn
195 11 188 194 fsumge0 φx1+∞0n=1xnRxn+1Rxn
196 189 39 195 divge0d φx1+∞0n=1xnRxn+1Rxnxlogx
197 190 196 absidd φx1+∞n=1xnRxn+1Rxnxlogx=n=1xnRxn+1Rxnxlogx
198 10 21 addcld φx1+∞ψx+n=1xψxn+1+xn+1
199 198 28 36 divcld φx1+∞ψx+n=1xψxn+1+xn+1xlogx
200 199 abscld φx1+∞ψx+n=1xψxn+1+xn+1xlogx
201 12 14 nndivred φx1+∞n1xxn
202 chpcl xnψxn
203 201 202 syl φx1+∞n1xψxn
204 203 201 readdcld φx1+∞n1xψxn+xn
205 204 19 resubcld φx1+∞n1xψxn+xn-ψxn+1+xn+1
206 134 205 remulcld φx1+∞n1xnψxn+xn-ψxn+1+xn+1
207 2 pntrval xn+1+Rxn+1=ψxn+1xn+1
208 109 207 syl φx1+∞n1xRxn+1=ψxn+1xn+1
209 2 pntrval xn+Rxn=ψxnxn
210 182 209 syl φx1+∞n1xRxn=ψxnxn
211 208 210 oveq12d φx1+∞n1xRxn+1Rxn=ψxn+1-xn+1-ψxnxn
212 18 recnd φx1+∞n1xψxn+1
213 203 recnd φx1+∞n1xψxn
214 113 114 139 divcld φx1+∞n1xxn
215 212 120 213 214 sub4d φx1+∞n1xψxn+1-xn+1-ψxnxn=ψxn+1-ψxn-xn+1xn
216 211 215 eqtrd φx1+∞n1xRxn+1Rxn=ψxn+1-ψxn-xn+1xn
217 216 fveq2d φx1+∞n1xRxn+1Rxn=ψxn+1-ψxn-xn+1xn
218 212 213 subcld φx1+∞n1xψxn+1ψxn
219 120 214 subcld φx1+∞n1xxn+1xn
220 218 219 abs2dif2d φx1+∞n1xψxn+1-ψxn-xn+1xnψxn+1ψxn+xn+1xn
221 217 220 eqbrtrd φx1+∞n1xRxn+1Rxnψxn+1ψxn+xn+1xn
222 76 78 12 80 135 lediv2ad φx1+∞n1xxn+1xn
223 chpwordi xn+1xnxn+1xnψxn+1ψxn
224 16 201 222 223 syl3anc φx1+∞n1xψxn+1ψxn
225 18 203 224 abssuble0d φx1+∞n1xψxn+1ψxn=ψxnψxn+1
226 16 201 222 abssuble0d φx1+∞n1xxn+1xn=xnxn+1
227 225 226 oveq12d φx1+∞n1xψxn+1ψxn+xn+1xn=ψxnψxn+1+xn-xn+1
228 213 214 212 120 addsub4d φx1+∞n1xψxn+xn-ψxn+1+xn+1=ψxnψxn+1+xn-xn+1
229 227 228 eqtr4d φx1+∞n1xψxn+1ψxn+xn+1xn=ψxn+xn-ψxn+1+xn+1
230 221 229 breqtrd φx1+∞n1xRxn+1Rxnψxn+xn-ψxn+1+xn+1
231 187 205 134 192 230 lemul2ad φx1+∞n1xnRxn+1Rxnnψxn+xn-ψxn+1+xn+1
232 11 188 206 231 fsumle φx1+∞n=1xnRxn+1Rxnn=1xnψxn+xn-ψxn+1+xn+1
233 205 recnd φx1+∞n1xψxn+xn-ψxn+1+xn+1
234 114 233 mulcld φx1+∞n1xnψxn+xn-ψxn+1+xn+1
235 11 234 fsumcl φx1+∞n=1xnψxn+xn-ψxn+1+xn+1
236 10 21 negdi2d φx1+∞ψx+n=1xψxn+1+xn+1=-ψx-n=1xψxn+1+xn+1
237 33 rprege0d φx1+∞x0x
238 flge0nn0 x0xx0
239 nn0p1nn x0x+1
240 237 238 239 3syl φx1+∞x+1
241 7 240 nndivred φx1+∞xx+1
242 2re 2
243 242 a1i φx1+∞2
244 flltp1 xx<x+1
245 7 244 syl φx1+∞x<x+1
246 240 nncnd φx1+∞x+1
247 246 mulridd φx1+∞x+11=x+1
248 245 247 breqtrrd φx1+∞x<x+11
249 240 nnrpd φx1+∞x+1+
250 7 31 249 ltdivmuld φx1+∞xx+1<1x<x+11
251 248 250 mpbird φx1+∞xx+1<1
252 1lt2 1<2
253 252 a1i φx1+∞1<2
254 241 31 243 251 253 lttrd φx1+∞xx+1<2
255 chpeq0 xx+1ψxx+1=0xx+1<2
256 241 255 syl φx1+∞ψxx+1=0xx+1<2
257 254 256 mpbird φx1+∞ψxx+1=0
258 257 oveq1d φx1+∞ψxx+1+xx+1=0+xx+1
259 241 recnd φx1+∞xx+1
260 259 addlidd φx1+∞0+xx+1=xx+1
261 258 260 eqtrd φx1+∞ψxx+1+xx+1=xx+1
262 261 oveq2d φx1+∞x+1ψxx+1+xx+1=x+1xx+1
263 240 nnne0d φx1+∞x+10
264 22 246 263 divcan2d φx1+∞x+1xx+1=x
265 262 264 eqtrd φx1+∞x+1ψxx+1+xx+1=x
266 22 div1d φx1+∞x1=x
267 266 fveq2d φx1+∞ψx1=ψx
268 267 266 oveq12d φx1+∞ψx1+x1=ψx+x
269 268 oveq2d φx1+∞1ψx1+x1=1ψx+x
270 9 7 readdcld φx1+∞ψx+x
271 270 recnd φx1+∞ψx+x
272 271 mullidd φx1+∞1ψx+x=ψx+x
273 269 272 eqtrd φx1+∞1ψx1+x1=ψx+x
274 265 273 oveq12d φx1+∞x+1ψxx+1+xx+11ψx1+x1=xψx+x
275 271 22 negsubdi2d φx1+∞ψx+x-x=xψx+x
276 10 22 pncand φx1+∞ψx+x-x=ψx
277 276 negeqd φx1+∞ψx+x-x=ψx
278 274 275 277 3eqtr2d φx1+∞x+1ψxx+1+xx+11ψx1+x1=ψx
279 7 flcld φx1+∞x
280 fzval3 x1x=1..^x+1
281 279 280 syl φx1+∞1x=1..^x+1
282 281 eqcomd φx1+∞1..^x+1=1x
283 114 115 pncan2d φx1+∞n1xn+1-n=1
284 283 oveq1d φx1+∞n1xn+1-nψxn+1+xn+1=1ψxn+1+xn+1
285 19 recnd φx1+∞n1xψxn+1+xn+1
286 285 mullidd φx1+∞n1x1ψxn+1+xn+1=ψxn+1+xn+1
287 284 286 eqtrd φx1+∞n1xn+1-nψxn+1+xn+1=ψxn+1+xn+1
288 282 287 sumeq12rdv φx1+∞n1..^x+1n+1-nψxn+1+xn+1=n=1xψxn+1+xn+1
289 278 288 oveq12d φx1+∞x+1ψxx+1+xx+1-1ψx1+x1-n1..^x+1n+1-nψxn+1+xn+1=-ψx-n=1xψxn+1+xn+1
290 oveq2 m=nxm=xn
291 290 fveq2d m=nψxm=ψxn
292 291 290 oveq12d m=nψxm+xm=ψxn+xn
293 292 ancli m=nm=nψxm+xm=ψxn+xn
294 oveq2 m=n+1xm=xn+1
295 294 fveq2d m=n+1ψxm=ψxn+1
296 295 294 oveq12d m=n+1ψxm+xm=ψxn+1+xn+1
297 296 ancli m=n+1m=n+1ψxm+xm=ψxn+1+xn+1
298 oveq2 m=1xm=x1
299 298 fveq2d m=1ψxm=ψx1
300 299 298 oveq12d m=1ψxm+xm=ψx1+x1
301 300 ancli m=1m=1ψxm+xm=ψx1+x1
302 oveq2 m=x+1xm=xx+1
303 302 fveq2d m=x+1ψxm=ψxx+1
304 303 302 oveq12d m=x+1ψxm+xm=ψxx+1+xx+1
305 304 ancli m=x+1m=x+1ψxm+xm=ψxx+1+xx+1
306 nnuz =1
307 240 306 eleqtrdi φx1+∞x+11
308 elfznn m1x+1m
309 308 adantl φx1+∞m1x+1m
310 309 nncnd φx1+∞m1x+1m
311 7 adantr φx1+∞m1x+1x
312 311 309 nndivred φx1+∞m1x+1xm
313 chpcl xmψxm
314 312 313 syl φx1+∞m1x+1ψxm
315 314 312 readdcld φx1+∞m1x+1ψxm+xm
316 315 recnd φx1+∞m1x+1ψxm+xm
317 293 297 301 305 307 310 316 fsumparts φx1+∞n1..^x+1nψxn+1+xn+1-ψxn+xn=x+1ψxx+1+xx+1-1ψx1+x1-n1..^x+1n+1-nψxn+1+xn+1
318 213 214 addcld φx1+∞n1xψxn+xn
319 212 120 addcld φx1+∞n1xψxn+1+xn+1
320 318 319 negsubdi2d φx1+∞n1xψxn+xn-ψxn+1+xn+1=ψxn+1+xn+1-ψxn+xn
321 320 oveq2d φx1+∞n1xnψxn+xn-ψxn+1+xn+1=nψxn+1+xn+1-ψxn+xn
322 114 233 mulneg2d φx1+∞n1xnψxn+xn-ψxn+1+xn+1=nψxn+xn-ψxn+1+xn+1
323 321 322 eqtr3d φx1+∞n1xnψxn+1+xn+1-ψxn+xn=nψxn+xn-ψxn+1+xn+1
324 282 323 sumeq12rdv φx1+∞n1..^x+1nψxn+1+xn+1-ψxn+xn=n=1xnψxn+xn-ψxn+1+xn+1
325 317 324 eqtr3d φx1+∞x+1ψxx+1+xx+1-1ψx1+x1-n1..^x+1n+1-nψxn+1+xn+1=n=1xnψxn+xn-ψxn+1+xn+1
326 236 289 325 3eqtr2d φx1+∞ψx+n=1xψxn+1+xn+1=n=1xnψxn+xn-ψxn+1+xn+1
327 11 234 fsumneg φx1+∞n=1xnψxn+xn-ψxn+1+xn+1=n=1xnψxn+xn-ψxn+1+xn+1
328 326 327 eqtr2d φx1+∞n=1xnψxn+xn-ψxn+1+xn+1=ψx+n=1xψxn+1+xn+1
329 235 198 328 neg11d φx1+∞n=1xnψxn+xn-ψxn+1+xn+1=ψx+n=1xψxn+1+xn+1
330 232 329 breqtrd φx1+∞n=1xnRxn+1Rxnψx+n=1xψxn+1+xn+1
331 189 176 39 330 lediv1dd φx1+∞n=1xnRxn+1Rxnxlogxψx+n=1xψxn+1+xn+1xlogx
332 177 leabsd φx1+∞ψx+n=1xψxn+1+xn+1xlogxψx+n=1xψxn+1+xn+1xlogx
333 190 177 200 331 332 letrd φx1+∞n=1xnRxn+1Rxnxlogxψx+n=1xψxn+1+xn+1xlogx
334 197 333 eqbrtrd φx1+∞n=1xnRxn+1Rxnxlogxψx+n=1xψxn+1+xn+1xlogx
335 334 adantrr φx1+∞1xn=1xnRxn+1Rxnxlogxψx+n=1xψxn+1+xn+1xlogx
336 5 175 177 191 335 o1le φx1+∞n=1xnRxn+1Rxnxlogx𝑂1