Metamath Proof Explorer


Theorem pntrlog2bndlem4

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S=ai=1aΛilogi+ψai
pntrlog2bnd.r R=a+ψaa
pntrlog2bnd.t T=aifa+aloga0
Assertion pntrlog2bndlem4 x1+∞Rxlogx2logxn=1xRxnTnTn1x𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 pntrlog2bnd.r R=a+ψaa
3 pntrlog2bnd.t T=aifa+aloga0
4 elioore x1+∞x
5 4 adantl x1+∞x
6 1rp 1+
7 6 a1i x1+∞1+
8 1red x1+∞1
9 eliooord x1+∞1<xx<+∞
10 9 adantl x1+∞1<xx<+∞
11 10 simpld x1+∞1<x
12 8 5 11 ltled x1+∞1x
13 5 7 12 rpgecld x1+∞x+
14 13 rprege0d x1+∞x0x
15 flge0nn0 x0xx0
16 14 15 syl x1+∞x0
17 nn0p1nn x0x+1
18 16 17 syl x1+∞x+1
19 18 nnrpd x1+∞x+1+
20 13 19 rpdivcld x1+∞xx+1+
21 2 pntrval xx+1+Rxx+1=ψxx+1xx+1
22 20 21 syl x1+∞Rxx+1=ψxx+1xx+1
23 5 18 nndivred x1+∞xx+1
24 2re 2
25 24 a1i x1+∞2
26 flltp1 xx<x+1
27 5 26 syl x1+∞x<x+1
28 18 nncnd x1+∞x+1
29 28 mulridd x1+∞x+11=x+1
30 27 29 breqtrrd x1+∞x<x+11
31 5 8 19 ltdivmuld x1+∞xx+1<1x<x+11
32 30 31 mpbird x1+∞xx+1<1
33 1lt2 1<2
34 33 a1i x1+∞1<2
35 23 8 25 32 34 lttrd x1+∞xx+1<2
36 chpeq0 xx+1ψxx+1=0xx+1<2
37 23 36 syl x1+∞ψxx+1=0xx+1<2
38 35 37 mpbird x1+∞ψxx+1=0
39 38 oveq1d x1+∞ψxx+1xx+1=0xx+1
40 22 39 eqtrd x1+∞Rxx+1=0xx+1
41 40 fveq2d x1+∞Rxx+1=0xx+1
42 0red x1+∞0
43 20 rpge0d x1+∞0xx+1
44 42 23 43 abssuble0d x1+∞0xx+1=xx+10
45 23 recnd x1+∞xx+1
46 45 subid1d x1+∞xx+10=xx+1
47 41 44 46 3eqtrd x1+∞Rxx+1=xx+1
48 16 nn0red x1+∞x
49 1 pntsval2 xSx=n=1xΛnlogn+my|ynΛmΛnm
50 48 49 syl x1+∞Sx=n=1xΛnlogn+my|ynΛmΛnm
51 16 nn0cnd x1+∞x
52 1cnd x1+∞1
53 51 52 pncand x1+∞x+1-1=x
54 53 fveq2d x1+∞Sx+1-1=Sx
55 1 pntsval2 xSx=n=1xΛnlogn+my|ynΛmΛnm
56 5 55 syl x1+∞Sx=n=1xΛnlogn+my|ynΛmΛnm
57 flidm xx=x
58 5 57 syl x1+∞x=x
59 58 oveq2d x1+∞1x=1x
60 59 sumeq1d x1+∞n=1xΛnlogn+my|ynΛmΛnm=n=1xΛnlogn+my|ynΛmΛnm
61 56 60 eqtr4d x1+∞Sx=n=1xΛnlogn+my|ynΛmΛnm
62 50 54 61 3eqtr4d x1+∞Sx+1-1=Sx
63 53 fveq2d x1+∞Tx+1-1=Tx
64 63 oveq2d x1+∞2Tx+1-1=2Tx
65 62 64 oveq12d x1+∞Sx+1-12Tx+1-1=Sx2Tx
66 47 65 oveq12d x1+∞Rxx+1Sx+1-12Tx+1-1=xx+1Sx2Tx
67 5 recnd x1+∞x
68 67 div1d x1+∞x1=x
69 68 fveq2d x1+∞Rx1=Rx
70 2 pntrf R:+
71 70 ffvelcdmi x+Rx
72 13 71 syl x1+∞Rx
73 69 72 eqeltrd x1+∞Rx1
74 73 recnd x1+∞Rx1
75 74 abscld x1+∞Rx1
76 75 recnd x1+∞Rx1
77 76 mul01d x1+∞Rx10=0
78 66 77 oveq12d x1+∞Rxx+1Sx+1-12Tx+1-1Rx10=xx+1Sx2Tx0
79 1 pntsf S:
80 79 ffvelcdmi xSx
81 5 80 syl x1+∞Sx
82 relogcl a+loga
83 remulcl alogaaloga
84 82 83 sylan2 aa+aloga
85 0red a¬a+0
86 84 85 ifclda aifa+aloga0
87 3 86 fmpti T:
88 87 ffvelcdmi xTx
89 48 88 syl x1+∞Tx
90 25 89 remulcld x1+∞2Tx
91 81 90 resubcld x1+∞Sx2Tx
92 23 91 remulcld x1+∞xx+1Sx2Tx
93 92 recnd x1+∞xx+1Sx2Tx
94 93 subid1d x1+∞xx+1Sx2Tx0=xx+1Sx2Tx
95 78 94 eqtrd x1+∞Rxx+1Sx+1-12Tx+1-1Rx10=xx+1Sx2Tx
96 5 flcld x1+∞x
97 fzval3 x1x=1..^x+1
98 96 97 syl x1+∞1x=1..^x+1
99 98 eqcomd x1+∞1..^x+1=1x
100 13 adantr x1+∞n1xx+
101 elfznn n1xn
102 101 adantl x1+∞n1xn
103 102 nnrpd x1+∞n1xn+
104 100 103 rpdivcld x1+∞n1xxn+
105 70 ffvelcdmi xn+Rxn
106 104 105 syl x1+∞n1xRxn
107 106 recnd x1+∞n1xRxn
108 107 abscld x1+∞n1xRxn
109 108 recnd x1+∞n1xRxn
110 6 a1i x1+∞n1x1+
111 103 110 rpaddcld x1+∞n1xn+1+
112 100 111 rpdivcld x1+∞n1xxn+1+
113 70 ffvelcdmi xn+1+Rxn+1
114 112 113 syl x1+∞n1xRxn+1
115 114 recnd x1+∞n1xRxn+1
116 115 abscld x1+∞n1xRxn+1
117 116 recnd x1+∞n1xRxn+1
118 109 117 negsubdi2d x1+∞n1xRxnRxn+1=Rxn+1Rxn
119 118 eqcomd x1+∞n1xRxn+1Rxn=RxnRxn+1
120 102 nncnd x1+∞n1xn
121 1cnd x1+∞n1x1
122 120 121 pncand x1+∞n1xn+1-1=n
123 122 fveq2d x1+∞n1xSn+1-1=Sn
124 122 fveq2d x1+∞n1xTn+1-1=Tn
125 rpre n+n
126 eleq1 a=na+n+
127 id a=na=n
128 fveq2 a=nloga=logn
129 127 128 oveq12d a=naloga=nlogn
130 126 129 ifbieq1d a=nifa+aloga0=ifn+nlogn0
131 ovex nlognV
132 c0ex 0V
133 131 132 ifex ifn+nlogn0V
134 130 3 133 fvmpt nTn=ifn+nlogn0
135 125 134 syl n+Tn=ifn+nlogn0
136 iftrue n+ifn+nlogn0=nlogn
137 135 136 eqtrd n+Tn=nlogn
138 103 137 syl x1+∞n1xTn=nlogn
139 124 138 eqtrd x1+∞n1xTn+1-1=nlogn
140 139 oveq2d x1+∞n1x2Tn+1-1=2nlogn
141 123 140 oveq12d x1+∞n1xSn+1-12Tn+1-1=Sn2nlogn
142 119 141 oveq12d x1+∞n1xRxn+1RxnSn+1-12Tn+1-1=RxnRxn+1Sn2nlogn
143 108 116 resubcld x1+∞n1xRxnRxn+1
144 143 recnd x1+∞n1xRxnRxn+1
145 102 nnred x1+∞n1xn
146 79 ffvelcdmi nSn
147 145 146 syl x1+∞n1xSn
148 24 a1i x1+∞n1x2
149 103 relogcld x1+∞n1xlogn
150 145 149 remulcld x1+∞n1xnlogn
151 148 150 remulcld x1+∞n1x2nlogn
152 147 151 resubcld x1+∞n1xSn2nlogn
153 152 recnd x1+∞n1xSn2nlogn
154 144 153 mulneg1d x1+∞n1xRxnRxn+1Sn2nlogn=RxnRxn+1Sn2nlogn
155 142 154 eqtrd x1+∞n1xRxn+1RxnSn+1-12Tn+1-1=RxnRxn+1Sn2nlogn
156 99 155 sumeq12rdv x1+∞n1..^x+1Rxn+1RxnSn+1-12Tn+1-1=n=1xRxnRxn+1Sn2nlogn
157 fzfid x1+∞1xFin
158 143 152 remulcld x1+∞n1xRxnRxn+1Sn2nlogn
159 158 recnd x1+∞n1xRxnRxn+1Sn2nlogn
160 157 159 fsumneg x1+∞n=1xRxnRxn+1Sn2nlogn=n=1xRxnRxn+1Sn2nlogn
161 156 160 eqtrd x1+∞n1..^x+1Rxn+1RxnSn+1-12Tn+1-1=n=1xRxnRxn+1Sn2nlogn
162 95 161 oveq12d x1+∞Rxx+1Sx+1-12Tx+1-1-Rx10-n1..^x+1Rxn+1RxnSn+1-12Tn+1-1=xx+1Sx2Txn=1xRxnRxn+1Sn2nlogn
163 oveq2 m=nxm=xn
164 163 fveq2d m=nRxm=Rxn
165 164 fveq2d m=nRxm=Rxn
166 fvoveq1 m=nSm1=Sn1
167 fvoveq1 m=nTm1=Tn1
168 167 oveq2d m=n2Tm1=2Tn1
169 166 168 oveq12d m=nSm12Tm1=Sn12Tn1
170 165 169 jca m=nRxm=RxnSm12Tm1=Sn12Tn1
171 oveq2 m=n+1xm=xn+1
172 171 fveq2d m=n+1Rxm=Rxn+1
173 172 fveq2d m=n+1Rxm=Rxn+1
174 fvoveq1 m=n+1Sm1=Sn+1-1
175 fvoveq1 m=n+1Tm1=Tn+1-1
176 175 oveq2d m=n+12Tm1=2Tn+1-1
177 174 176 oveq12d m=n+1Sm12Tm1=Sn+1-12Tn+1-1
178 173 177 jca m=n+1Rxm=Rxn+1Sm12Tm1=Sn+1-12Tn+1-1
179 oveq2 m=1xm=x1
180 179 fveq2d m=1Rxm=Rx1
181 180 fveq2d m=1Rxm=Rx1
182 oveq1 m=1m1=11
183 1m1e0 11=0
184 182 183 eqtrdi m=1m1=0
185 184 fveq2d m=1Sm1=S0
186 0re 0
187 fveq2 a=0a=0
188 0z 0
189 flid 00=0
190 188 189 ax-mp 0=0
191 187 190 eqtrdi a=0a=0
192 191 oveq2d a=01a=10
193 fz10 10=
194 192 193 eqtrdi a=01a=
195 194 sumeq1d a=0i=1aΛilogi+ψai=iΛilogi+ψai
196 sum0 iΛilogi+ψai=0
197 195 196 eqtrdi a=0i=1aΛilogi+ψai=0
198 197 1 132 fvmpt 0S0=0
199 186 198 ax-mp S0=0
200 185 199 eqtrdi m=1Sm1=0
201 184 fveq2d m=1Tm1=T0
202 rpne0 a+a0
203 202 necon2bi a=0¬a+
204 203 iffalsed a=0ifa+aloga0=0
205 204 3 132 fvmpt 0T0=0
206 186 205 ax-mp T0=0
207 201 206 eqtrdi m=1Tm1=0
208 207 oveq2d m=12Tm1=20
209 2t0e0 20=0
210 208 209 eqtrdi m=12Tm1=0
211 200 210 oveq12d m=1Sm12Tm1=00
212 0m0e0 00=0
213 211 212 eqtrdi m=1Sm12Tm1=0
214 181 213 jca m=1Rxm=Rx1Sm12Tm1=0
215 oveq2 m=x+1xm=xx+1
216 215 fveq2d m=x+1Rxm=Rxx+1
217 216 fveq2d m=x+1Rxm=Rxx+1
218 fvoveq1 m=x+1Sm1=Sx+1-1
219 fvoveq1 m=x+1Tm1=Tx+1-1
220 219 oveq2d m=x+12Tm1=2Tx+1-1
221 218 220 oveq12d m=x+1Sm12Tm1=Sx+1-12Tx+1-1
222 217 221 jca m=x+1Rxm=Rxx+1Sm12Tm1=Sx+1-12Tx+1-1
223 nnuz =1
224 18 223 eleqtrdi x1+∞x+11
225 13 adantr x1+∞m1x+1x+
226 elfznn m1x+1m
227 226 adantl x1+∞m1x+1m
228 227 nnrpd x1+∞m1x+1m+
229 225 228 rpdivcld x1+∞m1x+1xm+
230 70 ffvelcdmi xm+Rxm
231 229 230 syl x1+∞m1x+1Rxm
232 231 recnd x1+∞m1x+1Rxm
233 232 abscld x1+∞m1x+1Rxm
234 233 recnd x1+∞m1x+1Rxm
235 227 nnred x1+∞m1x+1m
236 1red x1+∞m1x+11
237 235 236 resubcld x1+∞m1x+1m1
238 79 ffvelcdmi m1Sm1
239 237 238 syl x1+∞m1x+1Sm1
240 24 a1i x1+∞m1x+12
241 87 ffvelcdmi m1Tm1
242 237 241 syl x1+∞m1x+1Tm1
243 240 242 remulcld x1+∞m1x+12Tm1
244 239 243 resubcld x1+∞m1x+1Sm12Tm1
245 244 recnd x1+∞m1x+1Sm12Tm1
246 170 178 214 222 224 234 245 fsumparts x1+∞n1..^x+1RxnSn+1-1-2Tn+1-1-Sn12Tn1=Rxx+1Sx+1-12Tx+1-1-Rx10-n1..^x+1Rxn+1RxnSn+1-12Tn+1-1
247 147 recnd x1+∞n1xSn
248 87 ffvelcdmi nTn
249 145 248 syl x1+∞n1xTn
250 148 249 remulcld x1+∞n1x2Tn
251 250 recnd x1+∞n1x2Tn
252 1red x1+∞n1x1
253 145 252 resubcld x1+∞n1xn1
254 79 ffvelcdmi n1Sn1
255 253 254 syl x1+∞n1xSn1
256 255 recnd x1+∞n1xSn1
257 87 ffvelcdmi n1Tn1
258 253 257 syl x1+∞n1xTn1
259 148 258 remulcld x1+∞n1x2Tn1
260 259 recnd x1+∞n1x2Tn1
261 247 251 256 260 sub4d x1+∞n1xSn-2Tn-Sn12Tn1=Sn-Sn1-2Tn2Tn1
262 124 oveq2d x1+∞n1x2Tn+1-1=2Tn
263 123 262 oveq12d x1+∞n1xSn+1-12Tn+1-1=Sn2Tn
264 263 oveq1d x1+∞n1xSn+1-1-2Tn+1-1-Sn12Tn1=Sn-2Tn-Sn12Tn1
265 2cnd x1+∞n1x2
266 249 recnd x1+∞n1xTn
267 258 recnd x1+∞n1xTn1
268 265 266 267 subdid x1+∞n1x2TnTn1=2Tn2Tn1
269 268 oveq2d x1+∞n1xSn-Sn1-2TnTn1=Sn-Sn1-2Tn2Tn1
270 261 264 269 3eqtr4d x1+∞n1xSn+1-1-2Tn+1-1-Sn12Tn1=Sn-Sn1-2TnTn1
271 270 oveq2d x1+∞n1xRxnSn+1-1-2Tn+1-1-Sn12Tn1=RxnSn-Sn1-2TnTn1
272 99 271 sumeq12rdv x1+∞n1..^x+1RxnSn+1-1-2Tn+1-1-Sn12Tn1=n=1xRxnSn-Sn1-2TnTn1
273 246 272 eqtr3d x1+∞Rxx+1Sx+1-12Tx+1-1-Rx10-n1..^x+1Rxn+1RxnSn+1-12Tn+1-1=n=1xRxnSn-Sn1-2TnTn1
274 157 159 fsumcl x1+∞n=1xRxnRxn+1Sn2nlogn
275 93 274 subnegd x1+∞xx+1Sx2Txn=1xRxnRxn+1Sn2nlogn=xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlogn
276 162 273 275 3eqtr3rd x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlogn=n=1xRxnSn-Sn1-2TnTn1
277 13 relogcld x1+∞logx
278 277 recnd x1+∞logx
279 67 278 mulcomd x1+∞xlogx=logxx
280 276 279 oveq12d x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=n=1xRxnSn-Sn1-2TnTn1logxx
281 147 255 resubcld x1+∞n1xSnSn1
282 249 258 resubcld x1+∞n1xTnTn1
283 148 282 remulcld x1+∞n1x2TnTn1
284 281 283 resubcld x1+∞n1xSn-Sn1-2TnTn1
285 108 284 remulcld x1+∞n1xRxnSn-Sn1-2TnTn1
286 157 285 fsumrecl x1+∞n=1xRxnSn-Sn1-2TnTn1
287 286 recnd x1+∞n=1xRxnSn-Sn1-2TnTn1
288 5 11 rplogcld x1+∞logx+
289 288 rpne0d x1+∞logx0
290 13 rpne0d x1+∞x0
291 287 278 67 289 290 divdiv1d x1+∞n=1xRxnSn-Sn1-2TnTn1logxx=n=1xRxnSn-Sn1-2TnTn1logxx
292 280 291 eqtr4d x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=n=1xRxnSn-Sn1-2TnTn1logxx
293 292 oveq2d x1+∞Rxlogxn=1xRxnSnSn1logxx+xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=Rxlogxn=1xRxnSnSn1logxx+n=1xRxnSn-Sn1-2TnTn1logxx
294 72 recnd x1+∞Rx
295 294 abscld x1+∞Rx
296 295 277 remulcld x1+∞Rxlogx
297 108 281 remulcld x1+∞n1xRxnSnSn1
298 157 297 fsumrecl x1+∞n=1xRxnSnSn1
299 298 288 rerpdivcld x1+∞n=1xRxnSnSn1logx
300 296 299 resubcld x1+∞Rxlogxn=1xRxnSnSn1logx
301 300 recnd x1+∞Rxlogxn=1xRxnSnSn1logx
302 287 278 289 divcld x1+∞n=1xRxnSn-Sn1-2TnTn1logx
303 301 302 67 290 divdird x1+∞Rxlogx-n=1xRxnSnSn1logx+n=1xRxnSn-Sn1-2TnTn1logxx=Rxlogxn=1xRxnSnSn1logxx+n=1xRxnSn-Sn1-2TnTn1logxx
304 296 recnd x1+∞Rxlogx
305 299 recnd x1+∞n=1xRxnSnSn1logx
306 304 305 302 subsubd x1+∞Rxlogxn=1xRxnSnSn1logxn=1xRxnSn-Sn1-2TnTn1logx=Rxlogx-n=1xRxnSnSn1logx+n=1xRxnSn-Sn1-2TnTn1logx
307 2cnd x1+∞2
308 266 267 subcld x1+∞n1xTnTn1
309 109 308 mulcld x1+∞n1xRxnTnTn1
310 157 307 309 fsummulc2 x1+∞2n=1xRxnTnTn1=n=1x2RxnTnTn1
311 281 recnd x1+∞n1xSnSn1
312 265 308 mulcld x1+∞n1x2TnTn1
313 311 312 nncand x1+∞n1xSn-Sn1-Sn-Sn1-2TnTn1=2TnTn1
314 313 oveq2d x1+∞n1xRxnSn-Sn1-Sn-Sn1-2TnTn1=Rxn2TnTn1
315 284 recnd x1+∞n1xSn-Sn1-2TnTn1
316 109 311 315 subdid x1+∞n1xRxnSn-Sn1-Sn-Sn1-2TnTn1=RxnSnSn1RxnSn-Sn1-2TnTn1
317 109 265 308 mul12d x1+∞n1xRxn2TnTn1=2RxnTnTn1
318 314 316 317 3eqtr3d x1+∞n1xRxnSnSn1RxnSn-Sn1-2TnTn1=2RxnTnTn1
319 318 sumeq2dv x1+∞n=1xRxnSnSn1RxnSn-Sn1-2TnTn1=n=1x2RxnTnTn1
320 297 recnd x1+∞n1xRxnSnSn1
321 285 recnd x1+∞n1xRxnSn-Sn1-2TnTn1
322 157 320 321 fsumsub x1+∞n=1xRxnSnSn1RxnSn-Sn1-2TnTn1=n=1xRxnSnSn1n=1xRxnSn-Sn1-2TnTn1
323 310 319 322 3eqtr2rd x1+∞n=1xRxnSnSn1n=1xRxnSn-Sn1-2TnTn1=2n=1xRxnTnTn1
324 323 oveq1d x1+∞n=1xRxnSnSn1n=1xRxnSn-Sn1-2TnTn1logx=2n=1xRxnTnTn1logx
325 298 recnd x1+∞n=1xRxnSnSn1
326 325 287 278 289 divsubdird x1+∞n=1xRxnSnSn1n=1xRxnSn-Sn1-2TnTn1logx=n=1xRxnSnSn1logxn=1xRxnSn-Sn1-2TnTn1logx
327 108 282 remulcld x1+∞n1xRxnTnTn1
328 157 327 fsumrecl x1+∞n=1xRxnTnTn1
329 328 recnd x1+∞n=1xRxnTnTn1
330 307 329 278 289 div23d x1+∞2n=1xRxnTnTn1logx=2logxn=1xRxnTnTn1
331 324 326 330 3eqtr3d x1+∞n=1xRxnSnSn1logxn=1xRxnSn-Sn1-2TnTn1logx=2logxn=1xRxnTnTn1
332 331 oveq2d x1+∞Rxlogxn=1xRxnSnSn1logxn=1xRxnSn-Sn1-2TnTn1logx=Rxlogx2logxn=1xRxnTnTn1
333 306 332 eqtr3d x1+∞Rxlogx-n=1xRxnSnSn1logx+n=1xRxnSn-Sn1-2TnTn1logx=Rxlogx2logxn=1xRxnTnTn1
334 333 oveq1d x1+∞Rxlogx-n=1xRxnSnSn1logx+n=1xRxnSn-Sn1-2TnTn1logxx=Rxlogx2logxn=1xRxnTnTn1x
335 293 303 334 3eqtr2d x1+∞Rxlogxn=1xRxnSnSn1logxx+xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=Rxlogx2logxn=1xRxnTnTn1x
336 335 mpteq2dva x1+∞Rxlogxn=1xRxnSnSn1logxx+xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=x1+∞Rxlogx2logxn=1xRxnTnTn1x
337 300 13 rerpdivcld x1+∞Rxlogxn=1xRxnSnSn1logxx
338 157 158 fsumrecl x1+∞n=1xRxnRxn+1Sn2nlogn
339 92 338 readdcld x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlogn
340 13 288 rpmulcld x1+∞xlogx+
341 339 340 rerpdivcld x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx
342 1 2 pntrlog2bndlem1 x1+∞Rxlogxn=1xRxnSnSn1logxx𝑂1
343 342 a1i x1+∞Rxlogxn=1xRxnSnSn1logxx𝑂1
344 340 rpcnd x1+∞xlogx
345 340 rpne0d x1+∞xlogx0
346 93 274 344 345 divdird x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=xx+1Sx2Txxlogx+n=1xRxnRxn+1Sn2nlognxlogx
347 91 recnd x1+∞Sx2Tx
348 45 347 344 345 divassd x1+∞xx+1Sx2Txxlogx=xx+1Sx2Txxlogx
349 348 oveq1d x1+∞xx+1Sx2Txxlogx+n=1xRxnRxn+1Sn2nlognxlogx=xx+1Sx2Txxlogx+n=1xRxnRxn+1Sn2nlognxlogx
350 346 349 eqtrd x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=xx+1Sx2Txxlogx+n=1xRxnRxn+1Sn2nlognxlogx
351 350 mpteq2dva x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx=x1+∞xx+1Sx2Txxlogx+n=1xRxnRxn+1Sn2nlognxlogx
352 91 340 rerpdivcld x1+∞Sx2Txxlogx
353 23 352 remulcld x1+∞xx+1Sx2Txxlogx
354 338 340 rerpdivcld x1+∞n=1xRxnRxn+1Sn2nlognxlogx
355 ioossre 1+∞
356 355 a1i 1+∞
357 1red 1
358 23 8 32 ltled x1+∞xx+11
359 358 adantrr x1+∞1xxx+11
360 356 23 357 357 359 ello1d x1+∞xx+1𝑂1
361 81 recnd x1+∞Sx
362 90 recnd x1+∞2Tx
363 361 362 344 345 divsubdird x1+∞Sx2Txxlogx=Sxxlogx2Txxlogx
364 363 mpteq2dva x1+∞Sx2Txxlogx=x1+∞Sxxlogx2Txxlogx
365 81 340 rerpdivcld x1+∞Sxxlogx
366 90 340 rerpdivcld x1+∞2Txxlogx
367 2cnd 2
368 o1const 1+∞2x1+∞2𝑂1
369 355 367 368 sylancr x1+∞2𝑂1
370 365 recnd x1+∞Sxxlogx
371 81 13 rerpdivcld x1+∞Sxx
372 371 recnd x1+∞Sxx
373 307 278 mulcld x1+∞2logx
374 372 373 278 289 divsubdird x1+∞Sxx2logxlogx=Sxxlogx2logxlogx
375 25 277 remulcld x1+∞2logx
376 371 375 resubcld x1+∞Sxx2logx
377 376 recnd x1+∞Sxx2logx
378 377 278 289 divrecd x1+∞Sxx2logxlogx=Sxx2logx1logx
379 361 67 278 290 289 divdiv1d x1+∞Sxxlogx=Sxxlogx
380 307 278 289 divcan4d x1+∞2logxlogx=2
381 379 380 oveq12d x1+∞Sxxlogx2logxlogx=Sxxlogx2
382 374 378 381 3eqtr3rd x1+∞Sxxlogx2=Sxx2logx1logx
383 382 mpteq2dva x1+∞Sxxlogx2=x1+∞Sxx2logx1logx
384 8 288 rerpdivcld x1+∞1logx
385 13 ex x1+∞x+
386 385 ssrdv 1+∞+
387 1 selbergs x+Sxx2logx𝑂1
388 387 a1i x+Sxx2logx𝑂1
389 386 388 o1res2 x1+∞Sxx2logx𝑂1
390 divlogrlim x1+∞1logx0
391 rlimo1 x1+∞1logx0x1+∞1logx𝑂1
392 390 391 mp1i x1+∞1logx𝑂1
393 376 384 389 392 o1mul2 x1+∞Sxx2logx1logx𝑂1
394 383 393 eqeltrd x1+∞Sxxlogx2𝑂1
395 370 307 394 o1dif x1+∞Sxxlogx𝑂1x1+∞2𝑂1
396 369 395 mpbird x1+∞Sxxlogx𝑂1
397 24 a1i 2
398 5 277 remulcld x1+∞xlogx
399 2rp 2+
400 399 a1i x1+∞2+
401 400 rpge0d x1+∞02
402 flge1nn x1xx
403 5 12 402 syl2anc x1+∞x
404 403 nnrpd x1+∞x+
405 rpre x+x
406 eleq1 a=xa+x+
407 id a=xa=x
408 fveq2 a=xloga=logx
409 407 408 oveq12d a=xaloga=xlogx
410 406 409 ifbieq1d a=xifa+aloga0=ifx+xlogx0
411 ovex xlogxV
412 411 132 ifex ifx+xlogx0V
413 410 3 412 fvmpt xTx=ifx+xlogx0
414 405 413 syl x+Tx=ifx+xlogx0
415 iftrue x+ifx+xlogx0=xlogx
416 414 415 eqtrd x+Tx=xlogx
417 404 416 syl x1+∞Tx=xlogx
418 404 relogcld x1+∞logx
419 16 nn0ge0d x1+∞0x
420 403 nnge1d x1+∞1x
421 48 420 logge0d x1+∞0logx
422 flle xxx
423 5 422 syl x1+∞xx
424 404 13 logled x1+∞xxlogxlogx
425 423 424 mpbid x1+∞logxlogx
426 48 5 418 277 419 421 423 425 lemul12ad x1+∞xlogxxlogx
427 417 426 eqbrtrd x1+∞Txxlogx
428 89 398 25 401 427 lemul2ad x1+∞2Tx2xlogx
429 90 25 340 ledivmul2d x1+∞2Txxlogx22Tx2xlogx
430 428 429 mpbird x1+∞2Txxlogx2
431 430 adantrr x1+∞1x2Txxlogx2
432 356 366 357 397 431 ello1d x1+∞2Txxlogx𝑂1
433 0red 0
434 48 418 419 421 mulge0d x1+∞0xlogx
435 434 417 breqtrrd x1+∞0Tx
436 25 89 401 435 mulge0d x1+∞02Tx
437 90 340 436 divge0d x1+∞02Txxlogx
438 366 433 437 o1lo12 x1+∞2Txxlogx𝑂1x1+∞2Txxlogx𝑂1
439 432 438 mpbird x1+∞2Txxlogx𝑂1
440 365 366 396 439 o1sub2 x1+∞Sxxlogx2Txxlogx𝑂1
441 364 440 eqeltrd x1+∞Sx2Txxlogx𝑂1
442 352 441 o1lo1d x1+∞Sx2Txxlogx𝑂1
443 23 352 360 442 43 lo1mul x1+∞xx+1Sx2Txxlogx𝑂1
444 1 selbergsb c+y1+∞Syy2logyc
445 simpl c+y1+∞Syy2logycc+
446 simpr c+y1+∞Syy2logycy1+∞Syy2logyc
447 1 2 445 446 pntrlog2bndlem3 c+y1+∞Syy2logycx1+∞n=1xRxnRxn+1Sn2nlognxlogx𝑂1
448 447 rexlimiva c+y1+∞Syy2logycx1+∞n=1xRxnRxn+1Sn2nlognxlogx𝑂1
449 444 448 mp1i x1+∞n=1xRxnRxn+1Sn2nlognxlogx𝑂1
450 354 449 o1lo1d x1+∞n=1xRxnRxn+1Sn2nlognxlogx𝑂1
451 353 354 443 450 lo1add x1+∞xx+1Sx2Txxlogx+n=1xRxnRxn+1Sn2nlognxlogx𝑂1
452 351 451 eqeltrd x1+∞xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx𝑂1
453 337 341 343 452 lo1add x1+∞Rxlogxn=1xRxnSnSn1logxx+xx+1Sx2Tx+n=1xRxnRxn+1Sn2nlognxlogx𝑂1
454 336 453 eqeltrrd x1+∞Rxlogx2logxn=1xRxnTnTn1x𝑂1
455 454 mptru x1+∞Rxlogx2logxn=1xRxnTnTn1x𝑂1