| Step |
Hyp |
Ref |
Expression |
| 1 |
|
polat.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 2 |
|
polat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
polat.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 4 |
|
polat.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
| 5 |
|
snssi |
⊢ ( 𝑄 ∈ 𝐴 → { 𝑄 } ⊆ 𝐴 ) |
| 6 |
1 2 3 4
|
polvalN |
⊢ ( ( 𝐾 ∈ OL ∧ { 𝑄 } ⊆ 𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝐴 ∩ ∩ 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
| 7 |
5 6
|
sylan2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝐴 ∩ ∩ 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
| 8 |
|
2fveq3 |
⊢ ( 𝑝 = 𝑄 → ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 9 |
8
|
iinxsng |
⊢ ( 𝑄 ∈ 𝐴 → ∩ 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ∩ 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 11 |
10
|
ineq2d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( 𝐴 ∩ ∩ 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) = ( 𝐴 ∩ ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) ) |
| 12 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 14 |
13 2
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
13 1
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
12 14 15
|
syl2an |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( ⊥ ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
13 2 3
|
pmapssat |
⊢ ( ( 𝐾 ∈ OL ∧ ( ⊥ ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ⊆ 𝐴 ) |
| 18 |
16 17
|
syldan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ⊆ 𝐴 ) |
| 19 |
|
sseqin2 |
⊢ ( ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( 𝐴 ∩ ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) |
| 21 |
7 11 20
|
3eqtrd |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑄 ) ) ) |