Metamath Proof Explorer


Theorem polatN

Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polat.o ˙=ocK
polat.a A=AtomsK
polat.m M=pmapK
polat.p P=𝑃K
Assertion polatN KOLQAPQ=M˙Q

Proof

Step Hyp Ref Expression
1 polat.o ˙=ocK
2 polat.a A=AtomsK
3 polat.m M=pmapK
4 polat.p P=𝑃K
5 snssi QAQA
6 1 2 3 4 polvalN KOLQAPQ=ApQM˙p
7 5 6 sylan2 KOLQAPQ=ApQM˙p
8 2fveq3 p=QM˙p=M˙Q
9 8 iinxsng QApQM˙p=M˙Q
10 9 adantl KOLQApQM˙p=M˙Q
11 10 ineq2d KOLQAApQM˙p=AM˙Q
12 olop KOLKOP
13 eqid BaseK=BaseK
14 13 2 atbase QAQBaseK
15 13 1 opoccl KOPQBaseK˙QBaseK
16 12 14 15 syl2an KOLQA˙QBaseK
17 13 2 3 pmapssat KOL˙QBaseKM˙QA
18 16 17 syldan KOLQAM˙QA
19 sseqin2 M˙QAAM˙Q=M˙Q
20 18 19 sylib KOLQAAM˙Q=M˙Q
21 7 11 20 3eqtrd KOLQAPQ=M˙Q