Metamath Proof Explorer


Theorem polatN

Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polat.o ˙ = oc K
polat.a A = Atoms K
polat.m M = pmap K
polat.p P = 𝑃 K
Assertion polatN K OL Q A P Q = M ˙ Q

Proof

Step Hyp Ref Expression
1 polat.o ˙ = oc K
2 polat.a A = Atoms K
3 polat.m M = pmap K
4 polat.p P = 𝑃 K
5 snssi Q A Q A
6 1 2 3 4 polvalN K OL Q A P Q = A p Q M ˙ p
7 5 6 sylan2 K OL Q A P Q = A p Q M ˙ p
8 2fveq3 p = Q M ˙ p = M ˙ Q
9 8 iinxsng Q A p Q M ˙ p = M ˙ Q
10 9 adantl K OL Q A p Q M ˙ p = M ˙ Q
11 10 ineq2d K OL Q A A p Q M ˙ p = A M ˙ Q
12 olop K OL K OP
13 eqid Base K = Base K
14 13 2 atbase Q A Q Base K
15 13 1 opoccl K OP Q Base K ˙ Q Base K
16 12 14 15 syl2an K OL Q A ˙ Q Base K
17 13 2 3 pmapssat K OL ˙ Q Base K M ˙ Q A
18 16 17 syldan K OL Q A M ˙ Q A
19 sseqin2 M ˙ Q A A M ˙ Q = M ˙ Q
20 18 19 sylib K OL Q A A M ˙ Q = M ˙ Q
21 7 11 20 3eqtrd K OL Q A P Q = M ˙ Q