Step |
Hyp |
Ref |
Expression |
1 |
|
enrer |
⊢ ~R Er ( P × P ) |
2 |
|
erdm |
⊢ ( ~R Er ( P × P ) → dom ~R = ( P × P ) ) |
3 |
1 2
|
ax-mp |
⊢ dom ~R = ( P × P ) |
4 |
|
simprll |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ) |
5 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → 𝐴 ∈ ( ( P × P ) / ~R ) ) |
6 |
4 5
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) |
7 |
|
ecelqsdm |
⊢ ( ( dom ~R = ( P × P ) ∧ [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) → ⟨ 𝑤 , 𝑣 ⟩ ∈ ( P × P ) ) |
8 |
3 6 7
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ⟨ 𝑤 , 𝑣 ⟩ ∈ ( P × P ) ) |
9 |
|
opelxp |
⊢ ( ⟨ 𝑤 , 𝑣 ⟩ ∈ ( P × P ) ↔ ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ) |
10 |
8 9
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ) |
11 |
|
simprrl |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ) |
12 |
11 5
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) |
13 |
|
ecelqsdm |
⊢ ( ( dom ~R = ( P × P ) ∧ [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) → ⟨ 𝑠 , 𝑓 ⟩ ∈ ( P × P ) ) |
14 |
3 12 13
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ⟨ 𝑠 , 𝑓 ⟩ ∈ ( P × P ) ) |
15 |
|
opelxp |
⊢ ( ⟨ 𝑠 , 𝑓 ⟩ ∈ ( P × P ) ↔ ( 𝑠 ∈ P ∧ 𝑓 ∈ P ) ) |
16 |
14 15
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( 𝑠 ∈ P ∧ 𝑓 ∈ P ) ) |
17 |
10 16
|
jca |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑠 ∈ P ∧ 𝑓 ∈ P ) ) ) |
18 |
|
simprlr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) |
19 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → 𝐵 ∈ ( ( P × P ) / ~R ) ) |
20 |
18 19
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) |
21 |
|
ecelqsdm |
⊢ ( ( dom ~R = ( P × P ) ∧ [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) → ⟨ 𝑢 , 𝑡 ⟩ ∈ ( P × P ) ) |
22 |
3 20 21
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ⟨ 𝑢 , 𝑡 ⟩ ∈ ( P × P ) ) |
23 |
|
opelxp |
⊢ ( ⟨ 𝑢 , 𝑡 ⟩ ∈ ( P × P ) ↔ ( 𝑢 ∈ P ∧ 𝑡 ∈ P ) ) |
24 |
22 23
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( 𝑢 ∈ P ∧ 𝑡 ∈ P ) ) |
25 |
|
simprrr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) |
26 |
25 19
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → [ ⟨ 𝑔 , ℎ ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) |
27 |
|
ecelqsdm |
⊢ ( ( dom ~R = ( P × P ) ∧ [ ⟨ 𝑔 , ℎ ⟩ ] ~R ∈ ( ( P × P ) / ~R ) ) → ⟨ 𝑔 , ℎ ⟩ ∈ ( P × P ) ) |
28 |
3 26 27
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ⟨ 𝑔 , ℎ ⟩ ∈ ( P × P ) ) |
29 |
|
opelxp |
⊢ ( ⟨ 𝑔 , ℎ ⟩ ∈ ( P × P ) ↔ ( 𝑔 ∈ P ∧ ℎ ∈ P ) ) |
30 |
28 29
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( 𝑔 ∈ P ∧ ℎ ∈ P ) ) |
31 |
24 30
|
jca |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ( 𝑢 ∈ P ∧ 𝑡 ∈ P ) ∧ ( 𝑔 ∈ P ∧ ℎ ∈ P ) ) ) |
32 |
4 11
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ) |
33 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ~R Er ( P × P ) ) |
34 |
33 8
|
erth |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ⟨ 𝑤 , 𝑣 ⟩ ~R ⟨ 𝑠 , 𝑓 ⟩ ↔ [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ) ) |
35 |
32 34
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ⟨ 𝑤 , 𝑣 ⟩ ~R ⟨ 𝑠 , 𝑓 ⟩ ) |
36 |
|
df-enr |
⊢ ~R = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ∃ 𝑑 ( ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑦 = ⟨ 𝑐 , 𝑑 ⟩ ) ∧ ( 𝑎 +P 𝑑 ) = ( 𝑏 +P 𝑐 ) ) ) } |
37 |
36
|
ecopoveq |
⊢ ( ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑠 ∈ P ∧ 𝑓 ∈ P ) ) → ( ⟨ 𝑤 , 𝑣 ⟩ ~R ⟨ 𝑠 , 𝑓 ⟩ ↔ ( 𝑤 +P 𝑓 ) = ( 𝑣 +P 𝑠 ) ) ) |
38 |
10 16 37
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ⟨ 𝑤 , 𝑣 ⟩ ~R ⟨ 𝑠 , 𝑓 ⟩ ↔ ( 𝑤 +P 𝑓 ) = ( 𝑣 +P 𝑠 ) ) ) |
39 |
35 38
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( 𝑤 +P 𝑓 ) = ( 𝑣 +P 𝑠 ) ) |
40 |
18 25
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) |
41 |
33 22
|
erth |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ⟨ 𝑢 , 𝑡 ⟩ ~R ⟨ 𝑔 , ℎ ⟩ ↔ [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) |
42 |
40 41
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ⟨ 𝑢 , 𝑡 ⟩ ~R ⟨ 𝑔 , ℎ ⟩ ) |
43 |
36
|
ecopoveq |
⊢ ( ( ( 𝑢 ∈ P ∧ 𝑡 ∈ P ) ∧ ( 𝑔 ∈ P ∧ ℎ ∈ P ) ) → ( ⟨ 𝑢 , 𝑡 ⟩ ~R ⟨ 𝑔 , ℎ ⟩ ↔ ( 𝑢 +P ℎ ) = ( 𝑡 +P 𝑔 ) ) ) |
44 |
24 30 43
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ⟨ 𝑢 , 𝑡 ⟩ ~R ⟨ 𝑔 , ℎ ⟩ ↔ ( 𝑢 +P ℎ ) = ( 𝑡 +P 𝑔 ) ) ) |
45 |
42 44
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( 𝑢 +P ℎ ) = ( 𝑡 +P 𝑔 ) ) |
46 |
39 45
|
jca |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ( 𝑤 +P 𝑓 ) = ( 𝑣 +P 𝑠 ) ∧ ( 𝑢 +P ℎ ) = ( 𝑡 +P 𝑔 ) ) ) |
47 |
17 31 46
|
jca31 |
⊢ ( ( ( 𝐴 ∈ ( ( P × P ) / ~R ) ∧ 𝐵 ∈ ( ( P × P ) / ~R ) ) ∧ ( ( 𝐴 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑢 , 𝑡 ⟩ ] ~R ) ∧ ( 𝐴 = [ ⟨ 𝑠 , 𝑓 ⟩ ] ~R ∧ 𝐵 = [ ⟨ 𝑔 , ℎ ⟩ ] ~R ) ) ) → ( ( ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑠 ∈ P ∧ 𝑓 ∈ P ) ) ∧ ( ( 𝑢 ∈ P ∧ 𝑡 ∈ P ) ∧ ( 𝑔 ∈ P ∧ ℎ ∈ P ) ) ) ∧ ( ( 𝑤 +P 𝑓 ) = ( 𝑣 +P 𝑠 ) ∧ ( 𝑢 +P ℎ ) = ( 𝑡 +P 𝑔 ) ) ) ) |