| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 2 | 1 | ralrimivw | ⊢ ( 𝐴  =  𝐵  →  ∀ 𝑥  ∈  ℚ ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 3 |  | xrlttri2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝐴  <  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 4 |  | qextltlem | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  ∃ 𝑥  ∈  ℚ ( ¬  ( 𝑥  <  𝐴  ↔  𝑥  <  𝐵 )  ∧  ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( ¬  ( 𝑥  <  𝐴  ↔  𝑥  <  𝐵 )  ∧  ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) )  →  ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 6 | 5 | reximi | ⊢ ( ∃ 𝑥  ∈  ℚ ( ¬  ( 𝑥  <  𝐴  ↔  𝑥  <  𝐵 )  ∧  ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) )  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 7 | 4 6 | syl6 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) | 
						
							| 8 |  | qextltlem | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐵  <  𝐴  →  ∃ 𝑥  ∈  ℚ ( ¬  ( 𝑥  <  𝐵  ↔  𝑥  <  𝐴 )  ∧  ¬  ( 𝑥  ≤  𝐵  ↔  𝑥  ≤  𝐴 ) ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ¬  ( 𝑥  <  𝐵  ↔  𝑥  <  𝐴 )  ∧  ¬  ( 𝑥  ≤  𝐵  ↔  𝑥  ≤  𝐴 ) )  →  ¬  ( 𝑥  ≤  𝐵  ↔  𝑥  ≤  𝐴 ) ) | 
						
							| 10 |  | bicom | ⊢ ( ( 𝑥  ≤  𝐵  ↔  𝑥  ≤  𝐴 )  ↔  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 11 | 9 10 | sylnib | ⊢ ( ( ¬  ( 𝑥  <  𝐵  ↔  𝑥  <  𝐴 )  ∧  ¬  ( 𝑥  ≤  𝐵  ↔  𝑥  ≤  𝐴 ) )  →  ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 12 | 11 | reximi | ⊢ ( ∃ 𝑥  ∈  ℚ ( ¬  ( 𝑥  <  𝐵  ↔  𝑥  <  𝐴 )  ∧  ¬  ( 𝑥  ≤  𝐵  ↔  𝑥  ≤  𝐴 ) )  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 13 | 8 12 | syl6 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐵  <  𝐴  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) | 
						
							| 14 | 13 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐵  <  𝐴  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) | 
						
							| 15 | 7 14 | jaod | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴  <  𝐵  ∨  𝐵  <  𝐴 )  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) | 
						
							| 16 | 3 15 | sylbid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ≠  𝐵  →  ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) | 
						
							| 17 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  ℚ ¬  ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 )  ↔  ¬  ∀ 𝑥  ∈  ℚ ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 18 | 16 17 | imbitrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ≠  𝐵  →  ¬  ∀ 𝑥  ∈  ℚ ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) | 
						
							| 19 | 18 | necon4ad | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ∀ 𝑥  ∈  ℚ ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 20 | 2 19 | impbid2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  =  𝐵  ↔  ∀ 𝑥  ∈  ℚ ( 𝑥  ≤  𝐴  ↔  𝑥  ≤  𝐵 ) ) ) |