Metamath Proof Explorer


Theorem rmsupp0

Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r 𝑅 = ( Base ‘ 𝑀 )
Assertion rmsupp0 ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 rmsuppss.r 𝑅 = ( Base ‘ 𝑀 )
2 fveq2 ( 𝑣 = 𝑤 → ( 𝐴𝑣 ) = ( 𝐴𝑤 ) )
3 2 oveq2d ( 𝑣 = 𝑤 → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) = ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) )
4 3 cbvmptv ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) = ( 𝑤𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) )
5 simpl2 ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → 𝑉𝑋 )
6 fvexd ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( 0g𝑀 ) ∈ V )
7 ovexd ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ∈ V )
8 4 5 6 7 mptsuppd ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) = { 𝑤𝑉 ∣ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) } )
9 simpll3 ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → 𝐶 = ( 0g𝑀 ) )
10 9 oveq1d ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( ( 0g𝑀 ) ( .r𝑀 ) ( 𝐴𝑤 ) ) )
11 simpll1 ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → 𝑀 ∈ Ring )
12 elmapi ( 𝐴 ∈ ( 𝑅m 𝑉 ) → 𝐴 : 𝑉𝑅 )
13 ffvelrn ( ( 𝐴 : 𝑉𝑅𝑤𝑉 ) → ( 𝐴𝑤 ) ∈ 𝑅 )
14 13 1 eleqtrdi ( ( 𝐴 : 𝑉𝑅𝑤𝑉 ) → ( 𝐴𝑤 ) ∈ ( Base ‘ 𝑀 ) )
15 14 ex ( 𝐴 : 𝑉𝑅 → ( 𝑤𝑉 → ( 𝐴𝑤 ) ∈ ( Base ‘ 𝑀 ) ) )
16 12 15 syl ( 𝐴 ∈ ( 𝑅m 𝑉 ) → ( 𝑤𝑉 → ( 𝐴𝑤 ) ∈ ( Base ‘ 𝑀 ) ) )
17 16 adantl ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( 𝑤𝑉 → ( 𝐴𝑤 ) ∈ ( Base ‘ 𝑀 ) ) )
18 17 imp ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( 𝐴𝑤 ) ∈ ( Base ‘ 𝑀 ) )
19 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
20 eqid ( .r𝑀 ) = ( .r𝑀 )
21 eqid ( 0g𝑀 ) = ( 0g𝑀 )
22 19 20 21 ringlz ( ( 𝑀 ∈ Ring ∧ ( 𝐴𝑤 ) ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g𝑀 ) ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( 0g𝑀 ) )
23 11 18 22 syl2anc ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( ( 0g𝑀 ) ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( 0g𝑀 ) )
24 10 23 eqtrd ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( 0g𝑀 ) )
25 24 neeq1d ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) ↔ ( 0g𝑀 ) ≠ ( 0g𝑀 ) ) )
26 25 rabbidva ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → { 𝑤𝑉 ∣ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) } = { 𝑤𝑉 ∣ ( 0g𝑀 ) ≠ ( 0g𝑀 ) } )
27 neirr ¬ ( 0g𝑀 ) ≠ ( 0g𝑀 )
28 27 a1i ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ¬ ( 0g𝑀 ) ≠ ( 0g𝑀 ) )
29 28 ralrimivw ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ∀ 𝑤𝑉 ¬ ( 0g𝑀 ) ≠ ( 0g𝑀 ) )
30 rabeq0 ( { 𝑤𝑉 ∣ ( 0g𝑀 ) ≠ ( 0g𝑀 ) } = ∅ ↔ ∀ 𝑤𝑉 ¬ ( 0g𝑀 ) ≠ ( 0g𝑀 ) )
31 29 30 sylibr ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → { 𝑤𝑉 ∣ ( 0g𝑀 ) ≠ ( 0g𝑀 ) } = ∅ )
32 8 26 31 3eqtrd ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = ( 0g𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) = ∅ )