Step |
Hyp |
Ref |
Expression |
1 |
|
rmsuppss.r |
⊢ 𝑅 = ( Base ‘ 𝑀 ) |
2 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝐴 ‘ 𝑣 ) = ( 𝐴 ‘ 𝑤 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑣 = 𝑤 → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) = ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ) |
4 |
3
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) ) = ( 𝑤 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑉 ∈ 𝑋 ) |
6 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 0g ‘ 𝑀 ) ∈ V ) |
7 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ∈ V ) |
8 |
4 5 6 7
|
mptsuppd |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) ) supp ( 0g ‘ 𝑀 ) ) = { 𝑤 ∈ 𝑉 ∣ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) } ) |
9 |
|
simpll3 |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → 𝐶 = ( 0g ‘ 𝑀 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( ( 0g ‘ 𝑀 ) ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ) |
11 |
|
simpll1 |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → 𝑀 ∈ Ring ) |
12 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐴 : 𝑉 ⟶ 𝑅 ) |
13 |
|
ffvelrn |
⊢ ( ( 𝐴 : 𝑉 ⟶ 𝑅 ∧ 𝑤 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑤 ) ∈ 𝑅 ) |
14 |
13 1
|
eleqtrdi |
⊢ ( ( 𝐴 : 𝑉 ⟶ 𝑅 ∧ 𝑤 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑤 ) ∈ ( Base ‘ 𝑀 ) ) |
15 |
14
|
ex |
⊢ ( 𝐴 : 𝑉 ⟶ 𝑅 → ( 𝑤 ∈ 𝑉 → ( 𝐴 ‘ 𝑤 ) ∈ ( Base ‘ 𝑀 ) ) ) |
16 |
12 15
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → ( 𝑤 ∈ 𝑉 → ( 𝐴 ‘ 𝑤 ) ∈ ( Base ‘ 𝑀 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑤 ∈ 𝑉 → ( 𝐴 ‘ 𝑤 ) ∈ ( Base ‘ 𝑀 ) ) ) |
18 |
17
|
imp |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑤 ) ∈ ( Base ‘ 𝑀 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑀 ) = ( .r ‘ 𝑀 ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
22 |
19 20 21
|
ringlz |
⊢ ( ( 𝑀 ∈ Ring ∧ ( 𝐴 ‘ 𝑤 ) ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ 𝑀 ) ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( 0g ‘ 𝑀 ) ) |
23 |
11 18 22
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( 0g ‘ 𝑀 ) ) |
24 |
10 23
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( 0g ‘ 𝑀 ) ) |
25 |
24
|
neeq1d |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) ↔ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) ) ) |
26 |
25
|
rabbidva |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → { 𝑤 ∈ 𝑉 ∣ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) } = { 𝑤 ∈ 𝑉 ∣ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) } ) |
27 |
|
neirr |
⊢ ¬ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) |
28 |
27
|
a1i |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ¬ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) ) |
29 |
28
|
ralrimivw |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ∀ 𝑤 ∈ 𝑉 ¬ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) ) |
30 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ 𝑉 ∣ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) } = ∅ ↔ ∀ 𝑤 ∈ 𝑉 ¬ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) ) |
31 |
29 30
|
sylibr |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → { 𝑤 ∈ 𝑉 ∣ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) } = ∅ ) |
32 |
8 26 31
|
3eqtrd |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = ( 0g ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) ) supp ( 0g ‘ 𝑀 ) ) = ∅ ) |