Step |
Hyp |
Ref |
Expression |
1 |
|
rmsuppss.r |
|- R = ( Base ` M ) |
2 |
|
fveq2 |
|- ( v = w -> ( A ` v ) = ( A ` w ) ) |
3 |
2
|
oveq2d |
|- ( v = w -> ( C ( .r ` M ) ( A ` v ) ) = ( C ( .r ` M ) ( A ` w ) ) ) |
4 |
3
|
cbvmptv |
|- ( v e. V |-> ( C ( .r ` M ) ( A ` v ) ) ) = ( w e. V |-> ( C ( .r ` M ) ( A ` w ) ) ) |
5 |
|
simpl2 |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> V e. X ) |
6 |
|
fvexd |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> ( 0g ` M ) e. _V ) |
7 |
|
ovexd |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> ( C ( .r ` M ) ( A ` w ) ) e. _V ) |
8 |
4 5 6 7
|
mptsuppd |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> ( ( v e. V |-> ( C ( .r ` M ) ( A ` v ) ) ) supp ( 0g ` M ) ) = { w e. V | ( C ( .r ` M ) ( A ` w ) ) =/= ( 0g ` M ) } ) |
9 |
|
simpll3 |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> C = ( 0g ` M ) ) |
10 |
9
|
oveq1d |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> ( C ( .r ` M ) ( A ` w ) ) = ( ( 0g ` M ) ( .r ` M ) ( A ` w ) ) ) |
11 |
|
simpll1 |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> M e. Ring ) |
12 |
|
elmapi |
|- ( A e. ( R ^m V ) -> A : V --> R ) |
13 |
|
ffvelrn |
|- ( ( A : V --> R /\ w e. V ) -> ( A ` w ) e. R ) |
14 |
13 1
|
eleqtrdi |
|- ( ( A : V --> R /\ w e. V ) -> ( A ` w ) e. ( Base ` M ) ) |
15 |
14
|
ex |
|- ( A : V --> R -> ( w e. V -> ( A ` w ) e. ( Base ` M ) ) ) |
16 |
12 15
|
syl |
|- ( A e. ( R ^m V ) -> ( w e. V -> ( A ` w ) e. ( Base ` M ) ) ) |
17 |
16
|
adantl |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> ( w e. V -> ( A ` w ) e. ( Base ` M ) ) ) |
18 |
17
|
imp |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> ( A ` w ) e. ( Base ` M ) ) |
19 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
20 |
|
eqid |
|- ( .r ` M ) = ( .r ` M ) |
21 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
22 |
19 20 21
|
ringlz |
|- ( ( M e. Ring /\ ( A ` w ) e. ( Base ` M ) ) -> ( ( 0g ` M ) ( .r ` M ) ( A ` w ) ) = ( 0g ` M ) ) |
23 |
11 18 22
|
syl2anc |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> ( ( 0g ` M ) ( .r ` M ) ( A ` w ) ) = ( 0g ` M ) ) |
24 |
10 23
|
eqtrd |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> ( C ( .r ` M ) ( A ` w ) ) = ( 0g ` M ) ) |
25 |
24
|
neeq1d |
|- ( ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) /\ w e. V ) -> ( ( C ( .r ` M ) ( A ` w ) ) =/= ( 0g ` M ) <-> ( 0g ` M ) =/= ( 0g ` M ) ) ) |
26 |
25
|
rabbidva |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> { w e. V | ( C ( .r ` M ) ( A ` w ) ) =/= ( 0g ` M ) } = { w e. V | ( 0g ` M ) =/= ( 0g ` M ) } ) |
27 |
|
neirr |
|- -. ( 0g ` M ) =/= ( 0g ` M ) |
28 |
27
|
a1i |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> -. ( 0g ` M ) =/= ( 0g ` M ) ) |
29 |
28
|
ralrimivw |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> A. w e. V -. ( 0g ` M ) =/= ( 0g ` M ) ) |
30 |
|
rabeq0 |
|- ( { w e. V | ( 0g ` M ) =/= ( 0g ` M ) } = (/) <-> A. w e. V -. ( 0g ` M ) =/= ( 0g ` M ) ) |
31 |
29 30
|
sylibr |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> { w e. V | ( 0g ` M ) =/= ( 0g ` M ) } = (/) ) |
32 |
8 26 31
|
3eqtrd |
|- ( ( ( M e. Ring /\ V e. X /\ C = ( 0g ` M ) ) /\ A e. ( R ^m V ) ) -> ( ( v e. V |-> ( C ( .r ` M ) ( A ` v ) ) ) supp ( 0g ` M ) ) = (/) ) |