Metamath Proof Explorer


Theorem rmsupp0

Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r R = Base M
Assertion rmsupp0 M Ring V X C = 0 M A R V v V C M A v supp 0 M =

Proof

Step Hyp Ref Expression
1 rmsuppss.r R = Base M
2 fveq2 v = w A v = A w
3 2 oveq2d v = w C M A v = C M A w
4 3 cbvmptv v V C M A v = w V C M A w
5 simpl2 M Ring V X C = 0 M A R V V X
6 fvexd M Ring V X C = 0 M A R V 0 M V
7 ovexd M Ring V X C = 0 M A R V w V C M A w V
8 4 5 6 7 mptsuppd M Ring V X C = 0 M A R V v V C M A v supp 0 M = w V | C M A w 0 M
9 simpll3 M Ring V X C = 0 M A R V w V C = 0 M
10 9 oveq1d M Ring V X C = 0 M A R V w V C M A w = 0 M M A w
11 simpll1 M Ring V X C = 0 M A R V w V M Ring
12 elmapi A R V A : V R
13 ffvelrn A : V R w V A w R
14 13 1 eleqtrdi A : V R w V A w Base M
15 14 ex A : V R w V A w Base M
16 12 15 syl A R V w V A w Base M
17 16 adantl M Ring V X C = 0 M A R V w V A w Base M
18 17 imp M Ring V X C = 0 M A R V w V A w Base M
19 eqid Base M = Base M
20 eqid M = M
21 eqid 0 M = 0 M
22 19 20 21 ringlz M Ring A w Base M 0 M M A w = 0 M
23 11 18 22 syl2anc M Ring V X C = 0 M A R V w V 0 M M A w = 0 M
24 10 23 eqtrd M Ring V X C = 0 M A R V w V C M A w = 0 M
25 24 neeq1d M Ring V X C = 0 M A R V w V C M A w 0 M 0 M 0 M
26 25 rabbidva M Ring V X C = 0 M A R V w V | C M A w 0 M = w V | 0 M 0 M
27 neirr ¬ 0 M 0 M
28 27 a1i M Ring V X C = 0 M A R V ¬ 0 M 0 M
29 28 ralrimivw M Ring V X C = 0 M A R V w V ¬ 0 M 0 M
30 rabeq0 w V | 0 M 0 M = w V ¬ 0 M 0 M
31 29 30 sylibr M Ring V X C = 0 M A R V w V | 0 M 0 M =
32 8 26 31 3eqtrd M Ring V X C = 0 M A R V v V C M A v supp 0 M =