| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmsuppss.r |
|
| 2 |
|
elmapi |
|
| 3 |
|
fdm |
|
| 4 |
3
|
eqcomd |
|
| 5 |
2 4
|
syl |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
oveq2 |
|
| 8 |
|
domnring |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpl |
|
| 11 |
9 10
|
anim12i |
|
| 12 |
11
|
3adant3 |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
1 13 14
|
ringrz |
|
| 16 |
12 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
7 17
|
sylan9eqr |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
necon3d |
|
| 21 |
|
simpl1l |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpll2 |
|
| 24 |
|
ffvelcdm |
|
| 25 |
24
|
ex |
|
| 26 |
2 25
|
syl |
|
| 27 |
26
|
3ad2ant3 |
|
| 28 |
27
|
imp |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
1 13 14
|
domnmuln0 |
|
| 32 |
22 23 29 30 31
|
syl112anc |
|
| 33 |
32
|
ex |
|
| 34 |
20 33
|
impbid |
|
| 35 |
6 34
|
rabeqbidva |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
oveq2d |
|
| 38 |
37
|
cbvmptv |
|
| 39 |
|
simp1r |
|
| 40 |
|
fvexd |
|
| 41 |
|
ovexd |
|
| 42 |
38 39 40 41
|
mptsuppd |
|
| 43 |
|
elmapfun |
|
| 44 |
43
|
3ad2ant3 |
|
| 45 |
|
simp3 |
|
| 46 |
|
suppval1 |
|
| 47 |
44 45 40 46
|
syl3anc |
|
| 48 |
35 42 47
|
3eqtr4d |
|